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Abstract: We consider the problem of characterizing and assessing the voltage stability in
power distribution networks. Different from previous formulations, we consider the branch-flow
parametrization of the power system state, which is particularly effective for radial networks. Our
approach to the voltage stability problem is based on a local, approximate, yet highly accurate
characterization of the determinant of the power flow Jacobian. Our determinant approximation
allows us to construct a voltage stability index that can be computed in a fully scalable and
distributed fashion. We provide an upper bound on the approximation error, and we show how
the proposed index outperforms other voltage indices recently proposed in the literature.
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1. INTRODUCTION

Operators of power distribution grids are facing unprece-
dented challenges caused by higher and intermittent con-
sumers’ demand, driven, among other things, by the pen-
etration of electric mobility. Grid congestion is expected,
as the demand gets closer to the hosting capacity of the
network. One of the main phenomena that determines the
finite power transfer capacity of a distribution grid is volt-
age instability (see the recent discussion in Simpson-Porco
et al. 2016). The amount of power that can be transferred
to the loads via a distribution feeder is inherently limited
by the non-linear physics of the system. In practice, as the
grid load approaches this limit, increasingly lower voltages
in the feeder are observed, followed by voltage collapse.

From the operational point of view, it is important to be
able to identify operating conditions of the grid that are
close to voltage collapse, in order to take the appropriate
remedial actions. Many different indices have been pro-
posed to quantify the distance of the grid from voltage
collapse. Most of them are based on the observation that
the Jacobian of the power flow equations becomes singular
at the steady state voltage stability limit (see Tamura et al.
1988). For a review of indices based on this approach, we
refer to Chebbo et al. (1992) and to Gao et al. (1992).

A geometric interpretation of the phenomena has been
developed by Chiang et al. (1990), and starting from
Tamura et al. (1983) voltage collapse has been related
to the appearance of bifurcations in the solutions of the
nonlinear power flow equations.

More recently, semidefinite programming has been pro-
posed as a tool to identify the region where voltage sta-
bility is guaranteed (Dvijotham and Turitsyn, 2015). The
same region has been also characterized based on applica-
tions of fixed-point theorems (see Bolognani and Zampieri
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2016 and references therein, and the extensions proposed
in Yu et al. 2015 and Wang et al. 2016). Additionally,
convex optimization tools have been used to determine
sufficient condition for unsolvability (and thus voltage
collapse) in Molzahn et al. (2013).

All these works propose global indices, in the sense that the
knowledge of the entire system state is required at some
central location, where the computation is performed.
Such a computation typically scales poorly with respect
to the grid size, hindering the practical applicability of
these methods. Few exception include heuristic indices
such as the one proposed in Vu et al. (1999), which can be
evaluated by each load based on local measurements.

The methodology that we propose in this paper builds
on the aforementioned approach based on the singularity
of the power flow Jacobian. Differently from other works,
however, we adopt a branch flow model for the power
flow equations (Baran and Wu, 1989; Farivar and Low,
2013). This choice gives us a specific advantage, towards
three results: first, we reduce the dimensionality of the
problem via algebraic manipulation of the Jacobian of such
equations; second, we propose an approximation of the
Jacobian-based voltage stability margin that is function of
only the diagonal elements of the manipulated Jacobian,
and is therefore computationally very tractable; finally,
we show how such an index can be computed in a fully
distributed way, based on purely local measurements at
the buses.

The paper is structured in the following way. In Section 2
we recall the branch flow model, while in Section 3 we
explain how voltage stability can be assessed based on
that model. In Section 4 we propose an approximate
voltage stability index and we analyze the quality of the
approximation. Finally, in Section 5, we illustrate the
result in simulations and we discuss the applicability of
this approach to practical grid operation.
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2. POWER DISTRIBUTION NETWORK MODEL

Let G = (N, E) be a directed tree representing a symmet-
ric and balanced radial distribution grid, where each node
in N ={0,1,...,n} represents a bus, and each edge in FE
represents a line. Note that |F| = n. A directed edge in E
is denoted by (i, ) and means that 4 is the parent of j. For
each node ¢, let 6(¢) C N denote the set of all its children.
Node 0 represents the root of the tree and corresponds to
the distribution grid substation. For each ¢ but the root 0,
let 7(i) € N be its unique parent.

We now define the basic variables of interest. For each
(1,7) € E let £;; be the magnitude squared of the complex
current from bus ¢ to bus j, and s;; = pi; + jgi; be
the sending-end complex power from bus i to bus j. Let
zij = rij+Jjzi; be the complex impedance on the line (4, 7).
For each node i, let v; be the magnitude squared of the
complex voltage at bus i, and s; = p; + jg; be the net
complex power demand (load minus generation) at bus s.

In the following, we make use of the compact notation
[], where x € R™, to indicate the n x n matrix that has
the elements of x on the diagonal, and zeros everywhere
else. Finally, we use the notation 1, and 0, for the n-
dimensional vectors of all 1’s and 0’s, respectively.

2.1 Relazed branch flow model

To model the power distribution network we use the
relaxed branch flow equations proposed in Baran and Wu
(1989); Farivar and Low (2013)!

Pj = Pr(i)j — Tn(i)ilr(i)i — Z Pjk, Vji€EN
kes(j)

G = 4e(); — Tn(iln(i — D Gk VIEN

ked(s)
— 2(r4jpij + ®ijqi5) + (rizj + x?j)@p v(i,j) € E
viliy = pij + a4z, V(i,5) € E

Uj = V;

To write these equations in vector form, we first define the
vectors p, ¢, and v, obtained by stacking the scalars p;, ¢;,
and v;, respectively, for i € N. Similarly we define p, g, £,
r, and x, as the vectors obtained by stacking the scalars
Dij» Qij» Lij, 7ij, and x;;, respectively, for (i,7) € E.

We define two (0, 1)-matrices A" and A°, where A’ €
R"T1%7 is the matrix which selects for each row j the
branch (i,j), where i = 7(j), and A° € R"T1X" ig the
matrix which selects for each row i the branches (i,7),
where j € (). Notice that A := A° — A’ is the incidence
matrix of the graph.

The relaxed branch flow equations in vector form are:
p=Ap-[r]t) - A%
q=A'(g—[2)0) — A7
ATy = ATy —2([r]p + [2]) + ([r]* + [2]?)¢
[ATo] ¢ =[PP + (a7
We model node 0 as a slack bus, in which vy is imposed
(vp = 1 p.u.) and all the other nodes as PQ buses, in

(1)

1 To make the model equations more compact, we adopted the
convention Pr(0)0 = 4= (0)0 = é‘rr(O)O = T7(0)0 = Zx(0)0 = 0.
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which the complex power demand (active and reactive
powers) is imposed and does not depend on the bus
voltage. Therefore, the quantities (vo,p1..n,q1..n) are to
be interpreted as state parameters, and the relaxed branch
flow model specifies 4n + 2 equations in 4n + 2 state
Va'riables7 (}71)767 €7 /Ul.un7p07q0)~

3. CHARACTERIZATION OF VOLTAGE STABILITY

A loadability limit of the power system is a critical oper-
ating point (as determined by the nodal power injections)
of the grid, where the power transfer reaches a maximum
value, after which the relaxed branch flow equations have
no solution. There are infinitely many loadability limits,
corresponding to different demand configurations. Ideally,
the power system will operate far away from these points,
with a sufficient safety margin. On the other hand, the
flat voltage solution (of the power flow equations) is the
operating point of the grid where v = 1,41, p = ¢ = Oy 41,
and p = ¢ = £ = 0,. This point is voltage stable and the
power system typically operates relatively close to it.

In the following, we recall and formalize the standard
reasoning that allows to characterize loadability limits via
conditions on the Jacobian of the power flow equations,
and we specialize those results for the branch flow model
that we have adopted.

8.1 Jacobian of the power flow equations

Based on the discussion at the end of Section 2, consider
the two vectors

p
¢ v

u= |, eR¥"?2 and &= |pi. .| € R
q0

corresponding to the state variables and the state parame-
ters, respectively. Then, the relaxed branch flow model (1)
can be expressed in an implicit form as

o(u,§) =0
From a mathematical point of view, a loadability limit
corresponds to the maximum of a scalar function v(§) (to
be interpreted as a measure of the total power transferred
to the loads), constrained to the set ¢(u,&) = 0 (the
physical grid constraints).

max  (§)

u?

subject to  ¢(u,§) =0

From direct application of the KKT optimality conditions,
it results that in a loadability limit the power flow Jacobian
O = g—ﬁ becomes singular, i.e., det(p,) = 0 (for details,
see Cutsem and Vournas 1998, Chapter 7). Based on
this, we adopt the following standard characterization for
voltage stability of the grid.

Definition. (Voltage stability region). The voltage stability
region of a power distribution network with one slack bus
and n PQ buses, described by the relaxed branch flow
model, is the open region surrounding the flat voltage
solution where the set of power flow solutions satisfy:

det(pu) # 0 (2)



ISIf)rticles el Y 20 6La5 s 3l OISl ¥
Olpl (pawasd DYl gz 5o Ve 00 Az 5 ddes 36kl Ol ¥/
auass daz 3 Gl Gy V

Wi Ol3a 9 £aoge o I rals 9oy T 55 g OISl V/

s ,a Jol domieo ¥ O, 55l 0lsel v/

ol guae sla oLl Al b ,mml csls p oKl V7

N s ls 5l e i (560 sglils V7

Sl 5,:K8) Kiadigh o Sl (5300 0,00 b 25 ol Sleiiy ¥/


https://isiarticles.com/article/146790

