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a b s t r a c t

Inter-individual variance in longevity (or any other demographic outcome) may arise from heterogene-
ity or from individual stochasticity. Heterogeneity refers to differences among individuals in the demo-
graphic rates experienced at a given age or stage. Stochasticity refers to variation due to the random
outcome of demographic rates applied to individuals with the same properties. The variance due to indi-
vidual stochasticity can be calculated from aMarkov chain description of the life cycle. The variance due to
heterogeneity can be calculated from a multistate model that incorporates the heterogeneity. We show
how to use this approach to decompose the variance in longevity into contributions from stochasticity
and heterogeneous frailty for male and female cohorts from Sweden (1751–1899), France (1816–1903),
and Italy (1872–1899), and also for a selection of period data for the same countries.

Heterogeneity inmortality is described by the gamma-Gompertz–Makehammodel, inwhich a gamma
distributed ‘‘frailty’’ modifies a baseline Gompertz–Makehammortality schedule.Model parameterswere
estimated by maximum likelihood for a range of starting ages. The estimates were used to construct
an age×frailty-classified matrix model, from which we compute the variance of longevity and its
components due to heterogeneous frailty and to individual stochasticity. The estimated fraction of the
variance in longevity due to heterogeneous frailty (averaged over time) is less than 10% for all countries
and for both sexes. These results suggest that most of the variance in human longevity arises from
stochasticity, rather than from heterogeneous frailty.

© 2017 The Authors. Published by Elsevier Inc.
This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Individual variance, especially in fitness components, plays a
key role in demography, ecology, and evolutionary biology. From
an evolutionary perspective, variance in fitness components is po-
tential material on which natural selection can operate. From a de-
mographic perspective, identifiable differences among individuals
are the basis for structured population models (Metz and Diek-
mann, 1986; Tuljapurkar and Caswell, 1997; Caswell, 2001); dif-
ferences due to age lead to age-structured models, differences due
to size lead to size-structured models, etc.

Longevity (age at death) is a fitness component that varies
widely among individuals. This variance arises as a result of two
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different underlying causes: individual stochasticity and hetero-
geneity. Individual stochasticity is variance due to random out-
comes of probabilistic demographic processes (living or dying,
reproducing or not, making or not making a life cycle transition).
Even in a completely homogeneous population, in which every
individual experienced exactly the same (age-specific) mortality
rates, variance due to individual stochasticitywould exist (Caswell,
2009). Any calculation of the variance in longevity fromanordinary
life table implicitly assumes that every individual is subject to the
(age-specific) mortality rates in that life table, and hence that the
variance is only due to individual stochasticity.

Variance in longevity can also result from unobserved, or
latent, heterogeneity in the properties of individuals. For example,
individuals of the same age may differ in their mortality rates due
to genetic, environmental, ormaternal effects. Such differences are
often referred to as heterogeneity in individual frailty (Vaupel et al.,
1979). Because more frail individuals are more at risk than others,
heterogeneity in frailty leads to changes in cohort composition
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with age, due to within-cohort selection. As a cohort ages, the
representation of less frail individuals increases, and the average
mortality rate in an old cohort will be lower than one would
expect based on extrapolation of mortality rates at younger ages.
This selection effect has been suggested as an explanation for the
mortality plateaus often observed at very old ages (Horiuchi and
Wilmoth, 1998; Vaupel et al., 1979; Vaupel, 1985).

The effects of unobserved heterogeneity in survival analysis can
be estimated using frailty models (Vaupel et al., 1979; Wienke,
2010). In frailty models, a baseline mortality schedule is mod-
ified by a term representing individual frailty. A widely used
example is the gamma-Gompertz model, which assumes an ex-
ponentially increasing age-specific baseline mortality rate (the
Gompertz model), and that frailty acts as a proportional hazard
multiplier of the baseline mortality (Vaupel et al., 2014). Frailty,
which is fixed over the life of the individual, follows a gamma dis-
tribution, the variance of which measures the amount of unob-
served heterogeneity.

The variance in longevity in a frailty model is a result of both
stochasticity and heterogeneity. Little is known about the relative
contribution of each to the total variance in longevity, and how
those contributions may depend on species, sex, environmental
conditions, etc. Caswell (2014) presented an ad hoc approach
to this problem, using an age × frailty-classified matrix model.
The variance in longevity was computed from the model and the
relative contributions of heterogeneity and stochasticity estimated
by reducing the initial variance in frailty to zero and attributing
the remaining longevity variance to stochasticity. In an analysis of
gamma-Gompertz parameters for a single year Swedish females
(obtained from Missov, 2013), the fraction of variance due to
heterogeneity was estimated to be only 0.071. Applying the same
approach to a gamma-Gompertz–Makeham model for women
from Turin (Zarulli et al., 2013) resulted in an even lower estimate
of 0.012.

Here, we present a more rigorous variance decomposition,
which does not require a hypothetical reduction of frailty variance
to zero. We apply it to large cohort mortality data sets for three
different countries: Sweden, France and Italy, over a long time
period. This will enable us to see whether any patterns in variance
can be generalized across countries, time periods, or sexes.

The paper is organized as follows. Section 2 describes the
gamma-Gompertz–Makeham mortality model. Section 3 presents
the construction of the age × frailty matrix model, and Section 3.2
provides themethods used to calculate longevity statistics and de-
compose the variance. Section 4 gives details about the mortality
data and estimation of the gamma-Gompertz–Makeham param-
eters. Section 5 presents the implementation of the age × frailty
matrix model. Section 6 presents the results for the cohort and pe-
riod data, and Section 7 discusses the interpretation of the results.

2. Frailty in the gamma-Gompertz–Makehammodel

Unobserved heterogeneity in mortality risk, or frailty, can be
included in mortality models by assuming that this frailty acts
to modify a baseline mortality rate shared by all individuals. The
gamma-Gompertz–Makeham mortality model has been shown to
give a good fit to human mortality data (Manton et al., 1986;
Yashin et al., 1994). It is an extension of the Gompertz model
(Gompertz, 1825), in which mortality at adult and older ages is an
exponentially increasing function of age. The Gompertz mortality
function has a baseline mortality parameter a and a parameter b
that determines the steepness of the exponential increase with
age. The Makehammodel an age-independent component c to the
mortality (Makeham, 1860). The Makeham term has been shown
to be essential to prevent distorted parameter estimates (Missov

and Németh, 2016). In the Gompertz–Makehammodel, the hazard
at age x equals:

µ(x) = aebx + c. (1)

In the gamma-Gompertz–Makeham model (hereafter called
Γ GM), the frailty of an individual is included as a (gamma-
distributed) random effect that is fixed over the lifetime. Dynamic
frailty, that can change with age or with health-related events, has
been included in other models (e.g., Vaupel and Yashin, 2006; Le
Bras, 1976; Gavrilov andGavrilova, 1991; Yashin et al., 1994, 2000).
The matrix analysis we develop here also applies to such dynamic
frailty models (Caswell, 2014); see Section 3.1. Frailty in the Γ GM
affects the (age-dependent part of) mortality as a proportional
hazard; the hazard µ(x, z) for an individual with frailty z at age
x is

µ(x, z) = zaebx + c. (2)

The initial frailty distribution in the cohort is gamma-
distributed, Z ∼ Γ (κ, λ), with shape parameter κ and scale pa-
rameter λ. The mean and variance of this distribution are E(Z) =

κ/λ and V (Z) = κ/λ2. The mean is set equal to 1, so that the co-
hort starts life with an average frailty of 1.When this is the case, i.e.
E(Z) = 1, λ = κ and the variance V (Z) = 1/λ := γ . The marginal
hazard function, which gives the unconditional population hazard
Manton et al. (1981) and Missov and Vaupel (2015), is a sigmoid
function

µ(x) =
aebx

1 +
aγ
b (ebx − 1)

+ c. (3)

Heterogeneity is described by the variance γ of frailty at the
starting age of analysis; the higher the variance, the greater the
heterogeneity between individuals. In a completely homogeneous
population, V (Z) = 0 and every individual experiences the same
age-dependent hazard.

Using (3) and applyingmaximum likelihood yields estimates for
the baseline mortality parameters a, b, c and for γ , the parameter
that describes the heterogeneity in frailty. This optimization is
described in more detail in Section 4.2.

3. An age × frailty matrix model

We incorporated the Γ GM mortality function into an age ×

frailty-classified matrix model (for a more general description of
age–stage classified matrix models see Caswell (2009, 2012)). Age
is described by a set of ω discrete age classes and frailty by a set
of g frailty classes that discretize the gamma distribution of frailty.
Vector µ0 of dimension ω contains the baseline age-specific part
of the mortality rates:

µ0 =

 ae0b
...

ae(ω−1)b

 . (4)

If zi is the frailty for the ith group, then the mortality vector for
frailty group i is

µi = ziµ0 + c i = 1, . . . , g. (5)

3.1. Cohort projection

The state of the cohort at age t is given by a vector ñ(t), which
is derived from an array

N (t) =

n11 · · · nω1
...

...
n1g · · · nωg

 (6)
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