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A B S T R A C T

Many empirical applications in the experimental economics literature involve interval response data. Various
methods have been considered to treat this type of data. One approach assumes that the data correspond to the
interval midpoint and then utilizes ordinary least squares to estimate the model. Another approach is to use
maximum likelihood estimation, assuming that the underlying variable of interest is normally distributed. In the
case of distributional misspecification, these estimation approaches can yield inconsistent estimators. In this
paper, we explore a method that can help reduce the misspecification problem by assuming a distribution that
can model a wide variety of distributional characteristics, including possible heteroskedasticity. The method is
applied to the problem of estimating the impact of various explanatory factors associated with individual dis-
count rates in a field experiment. Our analysis suggests that the underlying distribution of discount rates exhibits
skewness, but not heteroskedasticity, In this example, the findings based on a normal distribution are generally
robust across distributions.

1. Introduction

Many empirical applications in the experimental economics litera-
ture involve interval response data. Examples include commonly used
measures of risk aversion (see Harrison and Rutstrom, 2008; Charness
et al., 2013, for an overview), second-price Vickrey auctions with in-
terval bidding possibilities (Banerjee and Shogren, 2014), estimation of
willingness-to-pay (WTP; Dominitz and Manski, 1997; Hanley et al.,
2009, 2013) , and individual discount rates (Coller and Williams, 1999;
Harrison et al., 2002). The typical critique against tasks that elicit point
estimates in these contexts is “the payoff dominance” problem first
raised by Harrison (1992). The Becker–DeGroot–Marschak (BDM)
procedure, in particular, is known to have weaker incentives around the
optimum. In addition, data that rely on single-response methods, such
as the BDM, to elicit risk preferences or WTP are significantly noisier
(Harrison, 1986).

Various methods have been considered to treat this type of data.
One approach assumes that the data correspond to the interval mid-
point and then utilizes ordinary least squares to estimate the model.
Another approach is to use maximum likelihood estimation, assuming
that the distribution of the underlying variable of interest is of a par-
ticular form, such as the normal. While these methods are widely used
in the literature, they can yield inconsistent estimators and thus mis-
leading results in cases of distributional misspecification or in the
presence of heteroskedasticity.

In this paper, we consider the implications of using an estimator,
which is based on a flexible distribution that can accommodate a wide
range of skewness and kurtosis, hence having the potential to reduce
the impact of distributional misspecification. In particular, we use
maximum likelihood estimation of an interval response regression
model that corresponds to the skewed generalized t distribution (SGT)
and the generalized beta of the second kind (GB2). The SGT can model a
wide range of distributional characteristics for real-valued skewed and
leptokurtic data and includes many important distributions, such as the
normal, Laplace, generalized error distribution, and skewed variations
of these distributions as special and limiting cases. The GB2 is a flexible
distribution for positive valued outcomes. These two flexible distribu-
tion functions serve as alternatives to the normal distribution often
employed in interval regressions.

We apply this method to the problem of estimating the effects of
various possible explanatory factors on individual discount rates in a
field experiment described in Harrison et al. (2002), hereafter referred
to as HLW. In this experiment, the authors elicit individual discount
rates from subjects and test whether these rates vary (1) across
households and (2) over time. HLW find that discount rates vary sig-
nificantly with respect to several sociodemographic variables but not
over a one- to three-year time horizon. This finding provides an im-
portant contribution to our understanding of the nature of individual
discount rates, given their essential role in intertemporal welfare ana-
lyses.
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In this paper, we consider the implications of allowing for more
general distributions in estimating the model. We observe that the
underlying distribution of reported discount rates exhibits skewness,
heteroskedasticity, or both. This is inconsistent with the assumption of
normality and can impact parameter estimates. When applying more
flexible distributions, which allow for a wide range of skewness and
kurtosis values, such as SGT and GB2, we find that the nominal discount
rates are significantly impacted by some sociodemographic factors. We
compare and contrast our results with those obtained under the as-
sumption of normality and find that the magnitudes and statistical
significance of the coefficients are sensitive to the specification used,
but they are generally consistent with the findings of HLW.

In particular, our results show that the GB2 family generally dominates
the SGT as it provides a better fit with fewer parameters. Within the GB2
family, the 2-parameter and 3-parameter gamma (GA) and generalized
gamma (GG) distributions are arguably the best choice, considering fit,
parsimony, and easy interpretation. An added advantage of the GB2 family
over SGT is that an assumption of “heteroscedasticity” (making σ a function
of covariates) is unnecessary, considerably simplifying the interpretation of
parameters. For both the GA and GG, we find support for the HLW con-
clusion that rates appear to be somewhat greater at a 6-month delay than
for the longer delays, but constant across the longer delays. We also find
that in addition to the discount rate that predictors found to be significant in
HLW, our estimation of the GB2 model uncovers additional statistically
significant covariates.

This paper contributes to a growing literature in experimental
economics, which emphasizes various approaches to data analysis that
are widely used by other research communities (Ashley et al., 2010;
Frechette, 2012). While we discuss some well-known methods and their
application to interval response data, we also highlight a new metho-
dological framework and its advantages. We emphasize the important
implications that the underlying theory has for econometric models and
show how to check robustness of results to model specifications.

We focus this paper on the impact of accommodating diverse dis-
tributional characteristics of individual responses of monetary discount
rates, rather than addressing the more complicated problem of joint
estimation of the distribution and an underlying utility function as
explored in Anderson et al. (2008). The methodological framework is
outlined in Section 2. Section 3 provides an application of the methods
to the problem of estimating individual discount rates, and Section 4
concludes.

2. Methodology

2.1. The model and likelihood function

The proposed model can be summarized as follows:

= + =y X β* ɛ i 1, 2,...,ni i i (1)

where only the thresholds containing the latent variable y*i are ob-
served, Xi is a 1xK vector of explanatory variables with a corresponding
Kx1 coefficient vector β, and the ɛi are assumed to be independently and
identically distributed random disturbances. The observed upper and
lower thresholds of the latent variable y*i are denoted by Ui and Li,
respectively.

Stewart (1983) notes that inconsistent parameter estimates may
result from using regular ordinary least squares (OLS), with the de-
pendent variable being assigned to the value of the interval midpoint,
and the open-ended groups being assigned values on an ad hoc basis.
Stewart outlines different approaches to yield MLE (maximum like-
lihood estimation) under the assumption of normality and applies these
methods to the problem of estimating an earnings equation. Stata's in-
treg command facilitates MLE of interval response data in the case of
normally distributed errors and allows for the presence of hetero-
skedasticity.

We also apply a MLE approach to this estimation problem but allow
for possibly non-normal distributions, which can accommodate skew-
ness and kurtosis. We begin by noting that the conditional probability
that y*i is in the interval (Li,Ui) is given by

≤ ≤ = −L y U F U β θ X F L β θ XPr( * ) ( ; , ) ( ; , ),i i i i i i i (2)

where F(.) denotes the cumulative conditional distribution of y*i and θ
denotes a vector of distributional parameters. The corresponding log-
likelihood function for interval regression models is given by

∑= −β θ n F U β θ X F L β θ Xℓ( , ) ℓ [ ( ; , ) ( ; , )]
i

i i i i
(3)

Interval regression programs allow not only for interval data but for
censored data as well. For example, the Stata interval regression pro-
gram, intreg, accommodates right censored ( −∞( , U]i ) and left censored
([Li, ∞)) data by replacing the corresponding terms in (3) with F(Ui; β,
θ|Xi) and (1 − F L β θ X( ; , )i i ), respectively.

Maximum likelihood estimation (MLE) will be used throughout this
paper where Eq. (3) is maximized over the unknown parameters (β and
θ).

2.2. Distributional assumptions

As noted in the introduction, the properties of the parameter esti-
mates can be sensitive to the distributional assumptions. The most
common implementation of the MLE approach to this type of data in the
literature is based on the assumption of normally distributed errors. As
mentioned earlier, Stata's interval regression command (intreg) assumes
normally distributed errors and is a Tobit-like estimator for grouped
data. However, these estimators can be inconsistent if the errors are not
normally distributed or are associated with heteroskedasticity.
Adaptive or semiparametric estimation of econometric models avoid
specifying a particular probability density function but may be difficult
to implement. Partially adaptive estimation relaxes the normality as-
sumption by adopting a more flexible probability density function to
approximate the actual error distribution. Caudill (2012) uses a mixture
of normal distributions. Cook and McDonald (2013) use an inverse
hyperbolic sine distribution to estimate censored regression models,
finding that this specification improves estimator performance for the
cases considered. We will use the skewed generalized t (SGT) and the
generalized beta of the second kind (GB2), each of which allows a wide
range of skewness and kurtosis. The SGT can model real-valued re-
sponses and includes the normal as a special case. The GB2 is a flexible
model for applications in which the responses are positive, such as in
the example considered in Section 3.

2.3. The skewed generalized t distribution

The SGT was introduced by Theodossiou (1998) and extends the
generalized t (GT) (McDonald and Newey, 1988) and the skewed t (ST)
(Hansen 1994) and allows for a wide range of skewness and kurtosis;
for example, see Kerman and McDonald (2013). Other special cases of
the SGT include the skewed generalized error distribution (SGED),
skewed Laplace (SLaplace), generalized error distribution (GED),
skewed normal (SNormal), t, skewed Cauchy (SCauchy), Laplace, Uni-
form, Normal, and Cauchy. The five-parameter SGT can be defined by
the following density function:

=
+ −

+ −

+( )( )
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where − ∞ < < ∞y and B(., .)denotes the beta function.
The SGED is a limiting case of the SGT defined by
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