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Consider a wireless sensor network with a fusion center deployed to estimate a common non-random 
parameter vector. Each sensor obtains a noisy observation vector of the non-random parameter vector 
according to a linear regression model. The observation noise is correlated across the sensors. Due to 
power, bandwidth and complexity limitations, each sensor linearly compresses its data. The compressed 
data from the sensors are transmitted to the fusion center, which linearly estimates the non-random 
parameter vector. The goal is to design the compression matrices at the sensors and the linear unbiased 
estimator at the fusion center such that the total variance of the estimation error is minimized. In this 
paper, we provide necessary and sufficient conditions for achieving the performance of the centralized 
best linear unbiased estimator. We also provide the optimal compression matrices and the optimal 
linear unbiased estimator when these conditions are satisfied. When these conditions are not satisfied, 
we propose a sub-optimal algorithm to determine the compression matrices and the linear unbiased 
estimator. Simulation results are provided to illustrate the effectiveness of the proposed algorithm.

© 2017 Published by Elsevier Inc.

1. Introduction

Wireless sensor networks have attracted a great deal of atten-
tion due to their wide range of environmental monitoring, indus-
trial monitoring, military, agriculture and health applications [1]. 
In a network with a fusion center (FC), the sensors sense a phe-
nomenon, process the sensed data and pass the processed data 
to the FC. This is illustrated in Fig. 1. The sensors have limited 
communication bandwidth and are equipped with batteries with 
limited energy. Therefore, decentralized signal processing strate-
gies that reduce the amount of data transmitted from the sensors 
are necessary to conserve bandwidth resources and prolong net-
work lifetime.

In this paper, we consider a decentralized estimation of a non-
random parameter vector observed by multiple sensors according 
to a linear regression model. The observation noise is assumed to 
be correlated across the sensors. Correlated sensor noise is usually 
the case when the phenomena to be measured is subject to sim-
ilar interference and correlated ambient noise ([2]). Due to power 
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Fig. 1. Model of a wireless sensor network with a fusion center.

and bandwidth limitations, each sensor compresses its data before 
transmitting it to the FC. We assume error-free transmission on 
the communication link between each sensor and the FC. Commu-
nication is only between the sensors and the FC, and this can be 
achieved using either orthogonal transmissions or a random ac-
cess protocol. Based on the received messages from the sensors, 
the FC estimates the non-random parameter vector. Examples of 
applications of this model include imaging using a camera array 
and localization with an antenna array.

We model the finite bandwidth constraint as the number of 
real-valued messages and not as the number of binary bits (e.g., as 
in [3]) which can be sent from each sensor to the FC. Motivated 
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Fig. 2. The initial phase of the network.

by low-complexity requirements, we only consider linear compres-
sion functions at the sensors and a linear estimation function at 
the FC. The use of linear functions can be considered a special 
case of transform coding, similar to the discrete cosine transform 
or Karhunen–Loève transform in practical lossy data compression 
(see, e.g., [4]).

The initial phase of the network is shown in Fig. 2. The com-
putation of the compression matrices and the linear unbiased es-
timator is done offline at the FC, which has full knowledge of the 
model parameters as in the previous examples of applications. The 
FC then distributes the compression matrices to the sensors.

Our goal in this paper is to design the compression matrices 
at the sensors and the linear unbiased estimator at the FC such 
that the total variance of the estimation error is minimized. We 
consider two scenarios. In the first scenario, the number of mes-
sages from each sensor to the FC is fixed, whereas in the second 
scenario, only the total number of messages from all the sensors 
to the FC is fixed. We identify the minimum required number of 
messages from each sensor to achieve the performance of the cen-
tralized best linear unbiased estimator (BLUE). Furthermore, for 
Gaussian signals and noise this is actually the minimum-variance 
unbiased estimator (MVUE). When the centralized performance is 
achievable, we provide the optimal compression matrices and the 
optimal linear unbiased estimator. When the centralized perfor-
mance is not achievable, we suggest a greedy algorithm to deter-
mine the compression matrices and the linear unbiased estimator 
such that good estimation performance is maintained. We provide 
simulation results to show the effectiveness of the proposed algo-
rithm.

This paper deals with an estimation of a non-random param-
eter vector. The case of random parameter vector estimation was 
addressed in [2,5–10]. Schizas et al. [5] used a canonical corre-
lation analysis approach to study the problem. Grant et al. [6]
reduced the problem to a rank constrained matrix approximation 
problem. The presence of noisy links was considered in [2]. The 
work presented in [10] studied the problem of jointly determining 
the number of messages sent by each sensor and designing the 
corresponding compression matrices. The works in [7–9] explored 
the case where the multiple access channel is coherent. In [11–14]
the problem arising when the goal of the FC is to reconstruct all 
the sensor observations was investigated.

The case of non-random parameter vector estimation was stud-
ied in [15] and [16], assuming uncorrelated observation noise 
across the sensors. Here we assume that the observation noise 
is correlated across the sensors. Note that standard treatment of 
colored noise, using noise whitening, cannot be implemented in 
decentralized scenarios. The work presented in [16] proposed a 

censoring approach instead of the compression matrix based ap-
proach.

We do not assume any sparseness or compressibility on the pa-
rameter estimation vector. For more in this subject, see [17–20]. 
Many works allow an information exchange among the sensors 
(see, e.g., [21]). In this paper communication is only between the 
sensors and the FC.

The rest of this paper is organized as follows. Section 2 de-
scribes the model and formulates the problem. Section 3 derives 
the optimal solution under certain conditions that we provide and 
derives a sub-optimal solution when these conditions are not sat-
isfied. Section 4 provides simulation results. Section 5 concludes 
the paper.

The following notations are adopted throughout this paper: 
a lowercase letter denotes a scalar, a lowercase boldface letter de-
notes a vector and an uppercase boldface letter denotes a matrix. 
The superscripts (·)T and (·)−1 denote the transpose and inverse, 
respectively. The element in row i and column j of a matrix A is 
denoted as Ai j . The trace and the rank of a matrix A are denoted 
as tr (A) and rank (A), respectively. Positive semi-definiteness of a 
symmetric matrix A is denoted as A � 0. diag (C 1, . . . , Cn) denotes 
a block diagonal matrix where the matrices C 1, . . . , Cn are on the 
main diagonal. An estimator for parameter vector θ is represented 
as θ̂ . Finally, Rn and Rm×n denote the set of all n-dimensional col-
umn vectors of real numbers and the set of all m × n matrices of 
real numbers, respectively.

2. Problem formulation

Consider a wireless sensor network consisting of a FC and N
sensors, deployed to estimate a common non-random parameter 
vector θ ∈ R

p . Sensor i obtains a noisy observation vector of the 
vector θ according to

xi = H iθ + v i, 1 ≤ i ≤ N (1)

where H i ∈ R
ni×p is the observation matrix, v i ∈ R

ni is the ad-
ditive noise and xi ∈ R

ni denotes the sensor observation vector. 
Denote n �

∑N
i=1 ni , qi �

∑i
j=1 n j , x �

[
xT

1 , . . . , xT
N

]T ∈ R
n , H �[

H T
1 , . . . , H T

N

]T ∈ R
n×p , v �

[
v T

1 , . . . , v T
N

]T ∈ R
n and rewrite (1) as

x = Hθ + v. (2)

The noise vector v has zero mean and covariance matrix � ∈ R
n×n . 

Note that the observation noise is correlated across the sensors; 
i.e., � is not block diagonal. We assume n ≥ p and that the matrix 
H has full column rank. When the desired received signal is for 
example subject to external interference received by all the sen-
sors, the noise will be correlated across sensors. Examples of this 
case appear in reception of astronomical signals in the presence of 
terrestrial interference, or when signals with a known waveform 
are subject to interference from other systems (e.g., when OFDM 
signals are received with wide-band interference).

Due to power, bandwidth and complexity limitations, sensor i
compresses its observation vector to a vector yi ∈ R

ki (ki ≤ ni ) by 
using a linear compression matrix C i ∈R

ki×ni , i.e.,

yi = C ixi, 1 ≤ i ≤ N. (3)

The compressed data from the sensors are transmitted to the FC, 
assuming error-free transmission on the communication link be-
tween each sensor and the FC. Denote k �

∑N
i=1 ki , ri �

∑i
j=1 k j , 

y �
[

yT
1 , . . . , yT

N

]T ∈ R
k(k ≤ n), C � diag (C 1, . . . , C N ) ∈ R

k×n and 
rewrite (3) as

y = C x = C Hθ + C v. (4)

Denote H̃ � C H ∈R
k×p , ṽ � C v ∈R

k and rewrite (4) as

y = H̃θ + ṽ. (5)
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