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a b s t r a c t

This paper studies the distributed state estimation problem for a class of discrete time-varying systems
over sensor networks. Firstly, it is shown that the gain parameter optimization in a networked Kalman
filter requires a centralized framework. Then, a sub-optimal distributed Kalman filter (DKF) is proposed
by employing the covariance intersection (CI) fusion strategy. It is proven that the proposed DKF is of
consistency, that is, an upper bound of error covariance matrix can be provided by the filter in real time.
The consistency also enables the design of adaptive CI weights for better filter precision. Furthermore,
the boundedness of covariance matrix and the convergence of the proposed filter are proven based on
the strong connectivity of directed network topology and the global observability which permits the sub-
system with local sensor’s measurements to be unobservable. Meanwhile, to keep the covariance of the
estimation error bounded, the proposed DKF does not require the systemmatrix to be nonsingular at each
moment, which seems to be a necessary condition in the main DKF designs under global observability.
Finally, simulation results of two examples show the effectiveness of the algorithm in the considered
scenarios.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Wireless sensor networks (WSNs) usually consist of intelligent
sensing devices located at different geographical positions. Since
multiple sensors can collaboratively carry out the task by informa-
tion communication via the wireless channels, WSNs have been
widely applied in environmental monitoring (Cao, Chen, Yan, &
Sun, 2008), collaborative information processing (Kumar, 2012;
Wu, Sun, Lee, & Pan, 2017), data collection (Solis & Obraczka,
2007), distributed signal estimation (Schizas, Ribeiro, & Giannakis,
2008), and etc. In the past decades, state estimation problems
of WSNs have drawn more and more attention of researchers.
Two approaches are usually considered in existing work. The first
one is centralized filtering (Guo, Shi, Johansson, & Shi, 2017; Ren,

✩ This work was supported in part by the NSFC61603380, the National Key
Research and Development Program of China (2016YFB0901902), the National
Basic Research Program of China under Grant No. 2014CB845301. The material in
this paper was partially presented at the 14th International Conference on Control,
Automation, Robotics and Vision, November 13–15, 2016, Phuket, Thailand. This
paper was recommended for publication in revised form by Associate Editor Brett
Ninness under the direction of Editor Torsten Söderström.

* Corresponding author at: LSC, NCMIS, Academy of Mathematics and Systems
Science, Chinese Academy of Sciences, Beijing 100190, China.

E-mail addresses: xkhe@amss.ac.cn (X. He), wenchaoxue@amss.ac.cn (W. Xue),
htfang@iss.ac.cn (H. Fang).

Wu, Johansson, Shi, & Shi, 2018), i.e., a data center is set to col-
lect measurements from all sensors at each sampling moment.
The centralized Kalman filter (CKF) can be directly designed such
that the minimum variance state estimator is achieved for linear
systems with Gaussian noises. However, the centralized frame is
fragile since it could be easily influenced by link failure, time delay,
package loss and so on. The second approach, on the contrary,
utilizes distributed strategy, in which no central sensor exists. The
implementation of this strategy simply depends on information
exchange between neighbors (Boem, Xu, Fischione, & Parisini,
2015; Farina & Carli, 2016; He, Hu, Xue, & Fang, 2017; Hu, Xie,
& Zhang, 2012; Speranzon, Fischione, Johansson, & Sangiovanni-
Vincentelli, 2008; Sun, Fu,Wang, Zhang, &Marelli, 2016; Xie&Guo,
2015; Yang, Chen, Wang, & Shi, 2014; Yang, Yang, Shi, Shi, & Chen,
2017). Compared with the centralized approach, the distributed
frame has stronger ability in robustness and parallel processing.

Information communication between sensors plays an impor-
tant role in the design of distributed filtering. Generally, commu-
nication rate between neighbors could be faster than the rate of
measurement sensing. Fast information exchange between neigh-
bors supports the consensus strategy which can achieve the agree-
ment of information variables (e.g. measurements Das & Moura,
2015) of sensors. Actually, Carli, Chiuso, Schenato, and Zampieri
(2008), Cattivelli and Sayed (2010), Khan and Moura (2008) and
Olfati-Saber (2007) have shown some remarkable results on the
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convergence and the consensus of local filters with the consen-
sus strategy. However, faster communication rate probably needs
larger capability of computation and transmission to conduct the
consensus before the updates of filters. In the single-time scale,
the neighbor communication and measurement sensing share the
same rate, which can not only reduce communication burden
but also result in computation cost linearly matching with sensor
number over the network (He et al., 2017; Liu, Wang, He, & Zhou,
2015;Matei &Baras, 2012; Zhou, Fang, &Hong, 2013). Additionally,
the DKF algorithmwith faster communication rate can be designed
by combining the filter with single-time scale and the consensus
process. Hence, this paper considers distributed state estimation
algorithms in the single-time scale.

Parameter design of algorithms is one of the most essential
parts in the study of distributed state estimation problems. In He,
Xue, and Fang (2016), it is shown that a networked Kalman filter
with optimal gain parameter requires a centralized framework
since the calculation of time-varying gain parameter is dependent
on information of non-neighbors. Then a modified sub-optimal
distributed filter under undirected graph is proposed. Distributed
filters with constant filtering gains are well studied in Khan and
Jadbabaie (2014) and Khan, Kar, Jadbabaie, and Moura (2010),
which evaluate the relationship between the instability of sys-
tem and the boundedness of estimation error. In Das and Moura
(2015), measurement consensus based DKF is presented and de-
signmethods of the consensusweights aswell as the filtering gains
are rigorously studied. In Cattivelli and Sayed (2010), a general
diffusion DKF based on time-invariant weights is proposed and
performance of the distributed algorithm is analyzed in detail. To
achieve better estimation precision, time-varying parameters are
considered in Speranzon et al. (2008), which provides a distributed
minimum variance estimator for a scalar time-varying signal. In
Boem et al. (2015), a distributed prediction method for dynamic
systems is proposed to minimize bias and variance. The method
can effectively compute time-varying weights of the distributed
algorithm. A scalable partition-based distributed Kalman filter is
investigated in Farina and Carli (2016) to deal with coupling terms
and uncertainty among sub-systems. Furthermore, stability of this
algorithm is guaranteed through designing proper parameters.
Nevertheless, the work mentioned above have not considered
the distributed filter problem with global observability condition
which allows the sub-system with local sensor’s measurements to
be unobservable.

Research of distributed filter for time-varying systems based on
global observability is an important but difficult problem. Since
sensors of WSNs are sparsely located in different positions, the
observability condition assumed for the sub-system with respect
to one sensor is much stronger than that assumed for the overall
system based on global network. However, the work mentioned
above pay little attention to boundedness analysis of covariance
matrix and convergence analysis of the algorithm under global
observability. Regarding time-invariant systems, conditions on
global observability are usually determined by the system matrix,
the network topology and the global observation matrix which
collects model information of all sensors (Khan & Jadbabaie, 2014;
Khan et al., 2010). This means that distributed filters with con-
stant filtering gain can be designed to guarantee stability of the
algorithm. However, most of the methods fail for time-varying
systems. Battistelli andChisci (2014) andBattistelli, Chisci,Mugnai,
Farina, and Graziano (2015) give some pioneer work on building
consensus DKF algorithms under the global observability for time-
invariant systems. Nevertheless, they require the assumption that
the system matrix is nonsingular, which seems to be severe for
time-varying systems at every moment. In this paper, we aim to
develop a scalable and totally distributed algorithm for a class
of discrete linear time-varying systems in the WSNs. The main
contributions are summarized as follows.

(1) The proposed consistent distributed Kalman filter (CDKF)
guarantees the error covariance matrix can be upper
bounded by a parameter matrix, which is timely calculated
by each sensor using local information. This property is quite
of importance since it supports an effective error evaluation
principle in real time.

(2) A set of adaptive weights based on CI fusion is determined
through a Semi-definite Programming (SDP) convex opti-
mization method. It is proven that the proposed adaptive
CI weights ensure lower error covariance bound than that
with constant CI weights which are mainly used in existing
work (Battistelli & Chisci, 2014, 2016; Battistelli et al., 2015).
Therefore, adaptive CI weights can achieve improvement of
estimation performance.

(3) Global observability instead of local observability is as-
sumed for the system over networks. This allows the
sub-system with local sensor’s measurements to be un-
observable. Additionally, the assumption of system matrix
being nonsingular at each moment is loosened (Battistelli &
Chisci, 2014, 2016; Battistelli et al., 2015; He et al., 2016;
Wang & Ren, 2017). Since the nonsingularity of system
matrix at each moment is difficult to be satisfied for time-
varying systems, the proposed filter can greatly enlarge
application range of the distributed state estimation algo-
rithms.

The remainder of this paper is organized as follows. Section 2
presents some necessary preliminaries and notations of this pa-
per. Section 3 is on problem formulation and distributed filtering
algorithms. Section 4 considers performance of the proposed al-
gorithm. Section 5 is on simulation studies. The conclusion of this
paper is given in Section 6.

2. Preliminaries and notations

Let G = (V, E,A) be a directed graph, which consists of the
set of nodes V = {1, 2, . . . ,N}, the set of edges E ⊆ V × V and
the weighted adjacent matrix A = [ai,j]. In the weighted adjacent
matrix A, all elements are nonnegative, row stochastic and the di-
agonal elements are all positive, i.e., ai,i > 0, ai,j ≥ 0,

∑
j∈Vai,j = 1.

If ai,j > 0, j ̸= i, then there is an edge (i, j) ∈ E , whichmeans node i
candirectly receive the information of node j. In this situation, node
j is called the neighbor of node i. All neighbors of node i including
itself can be represented by the set {j ∈ V|(i, j) ∈ E}

⋃
{i} ≜

Ni, whose size is denoted as |Ni|. G is called strongly connected
if for any pair nodes (i1, il), there exists a directed path from i1
to il consisting of edges (i1, i2), (i2, i3), . . . , (il−1, il). According to
Horn and Johnson (2012) and Varga (2009), the following lemma
is obtained.

Lemma 1. If the directed graph G = (V, E,A) is strongly connected
with V = {1, 2, . . . ,N}, then all elements of As, s ≥ N − 1, are
positive.

Throughout this paper, the notations used are fairly standard.
The superscript ‘‘T’’ represents transpose. The notation A ≥ B (or
A > B), where A and B are both symmetric matrices, means that
A − B is a positive semidefinite (or positive definite) matrix. In
stands for the identity matrix with n rows and n columns. E{x}
denotes the mathematical expectation of the stochastic variable x,
and blockcol{·}means the block elements are arranged in columns.
blockdiag{·} and diag{·} represent the diagonalizations of block
elements and scalar elements, respectively. tr(P) is the trace of
matrix P . The notation ⊗ stands for tensor product. The integer set
from a to b is denoted as [a : b].
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