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a b s t r a c t

This paper proposes a novel recursive B-spline approximation (RBA) algorithm which approximates an
unbounded number of data points with a B-spline function and achieves lower computational effort com-
pared with previous algorithms. Conventional recursive algorithms based on the Kalman filter (KF)
restrict the approximation to a bounded and predefined interval. Conversely RBA includes a novel shift
operation that enables to shift estimated B-spline coefficients in the state vector of a KF. This allows to
adapt the interval in which the B-spline function can approximate data points during run-time.
� 2016 Karabuk University. Publishing services by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

A B-spline function is a piecewise defined polynomial function
with several beneficial properties such as numerical stability of
computations, local effects of coefficient changes and built-in
smoothness between neighboring polynomial pieces [2, chap. 1].
A common application of B-spline functions, curves and surfaces
is fitting of data points. Fitting can either be interpolation or
approximation. An interpolating B-spline function passes through
the data points, whereas an approximating B-spline function mini-
mizes the residuals between the function and the data but does not
pass through the data points in general. The representation using
B-splines is popular in computer-aided design, modeling and engi-
neering as well as computer graphics for the geometry of curves,
objects and surfaces [3]. It is also used for planning trajectories of
computer controlled industrial machines [4] and robots [5,6].

Fitting B-spline functions can be determined by the weighted
least squares (WLS) method. It is often used in offline applications,
where all data points are available at once.

The Kalman filter (KF) is an established method for estimating
the state of a dynamic system. Applications include tracking, nav-
igation, sensor data fusion and process control [7, pp. 4f.]. The KF
can be seen as a generalization of the recursive least squares
(RLS) method [8, p. 129]. RLS can compute an approximating

B-spline function recursively meaning that the approximation is
updated with each new data point. This is desired in online appli-
cations, in which data points are observed one after another.

1.1. Problem statement

The value of a B-spline function is given by the sum of basis
functions (B-splines) weighted with their corresponding coeffi-
cients. Each B-spline is only nonzero within a certain bounded
interval which causes that the definition range of a B-spline is
bounded as well. If the magnitude of the data points is not exactly
known or changes over time, data points can be outside the defini-
tion range. Such data points cannot be taken into account. Thereby
the problem arises that the approximation might not reflect the
data anymore.

Publications concerning the recursive data approximation with
a B-spline function have not addressed this issue but have assumed
a constant definition range. For example, the approaches based on
the KF in [9,10] require that the KF state vector contains all coeffi-
cients that are estimated during the whole approximation proce-
dure. Therefore the number of coefficients has to be bounded
and specified in advance. As a result, these algorithms can only
approximate data points that are within the bounded definition
range determined at the beginning.

1.2. Contribution

We propose a novel B-spline approximation (RBA) algorithm
that solves the approximation problem iteratively using a KF.
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RBA overcomes the current limitation of recursive algorithms
based on the KF concerning the fixed approximation interval. The
main contribution is to use the time update of the KF for a shift
of estimated B-spline coefficients in the KF state vector in combi-
nation with a shift in the B-spline knot vector. The shift operation
enables to shift the definition range such that it is always possible
to take into account the latest data point for the approximation.

In online and offline applications, the shift operation allows to
reduce the size of the state vector. As smaller state vector causes
less computational effort. Table 1 displays the relevant features
of different B-spline approximation methods.

1.3. Fitting algorithms for B-spline functions

Fitting B-spline functions can be computed by least squares (LS)
methods [2,11,12]. With the standard formula in batch form, all
data points have to be collected and then processed simultane-
ously. Therefore the number of data points n needs to be bounded.
The computation usually involves a Cholesky or QR factorization
and requires OðnÞ operations if one takes advantage of the banded
matrix structure [13, pp. 327–331]. Such algorithms are stated in
[13, pp. 117–121] and [14, pp. 152–160]. With the LS algorithm
each data point influences the result to the same extend. The
WLS algorithm allows to weight measurements relative to each
other [2, pp. 119–123].

In online applications an ever-growing amount of data is com-
mon. LS algorithms for online applications can be subdivided into
two groups: First, growing memory LS algorithms apply a weight-
ing that forgets old data exponentially. Second, sliding window LS
algorithms discard old data completely and require only finite stor-
age [15]. Sliding window LS and sliding window WLS algorithms
are proposed in [15–18], respectively. Re-computing the fitting
function from scratch with each new data point is costly. Rank
update and rank downdate methods allow to re-use an already
known factorization for an efficient update of a solution when
observations have been added or deleted [19–21].

With WLS the bounded definition range of B-spline functions
does not present a problem because the number and position of
B-splines can be changed if the fitting function is re-computed
from scratch. Moreover, rank modification methods support add-
ing or deleting matrix columns [20]. This allows to extend, shrink
or shift the definition range of the B-spline function.

Recursive algorithms such as RLS (see [8, pp. 84–88]) usually
require less computational power than batch algorithms because
they use smaller matrices and vectors whose sizes do not depend
on the number of data points. The recursive computation is also
referred to as progressive, iterative or sequential. In [22] fitting
B-spline curves and surfaces are iteratively constructed based on
the idea of profit and loss modification without solving a linear
system. The authors of [23] build on the progressive and iterative
approximation technique for B-spline curve and surface fitting
and prove that the proposed algorithm achieves a least squares
fit to the data points. A recursive algorithm for optimal smoothing
B-spline surfaces inspired by the RLS method is presented in [24].
Algorithms that involve a KF are stated in [9,10]. All recursive
approaches mentioned assume a constant definition range.

1.4. Structure of the data set

fðst ; ytÞgt¼1;2;...;n is a set of n data points. t denotes the time step
at which data point (st ; yt) has been measured or observed. st is the
value of the independent variable s at time step t. yt ¼
ðyt;1; yt;2; . . . ; yt;v ; . . . ; yt;Vt

Þ> is a vector of Vt measurements y that
refer to st and may come from different sensors. > denotes the
transpose operation. Vt 2 N is allowed to be different for each yt .
We assume that Vt � n8t. The vector of all measurements y is
composed as follows:

y> ¼ ðy1;1; . . . ; y1;V1|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
¼:y>1

; . . . ; y>t ; . . . ; yn;1; . . . ; yn;Vn|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
¼:y>n

Þ ð1Þ

1.5. Outline

The remainder of this article is structured as follows: In Sec-
tion 2.1 we introduce a B-spline function definition in matrix form.
Section 2.2 describes the WLS approach followed by the KF algo-
rithm in Section 2.3. Section 2.4 presents the novel RBA algorithm.
Its effectiveness is demonstrated in comparison with theWLS solu-
tion by numerical examples in Section 3. We summarize the char-
acteristics of RBA and draw our conclusions in Section 4.

2. Methods

2.1. B-spline functions

A B-spline function is a piecewise defined function. Its value is
given by the weighted sum of J polynomial basis functions (B-
splines) of degree d. The knot vector is j ¼ ðj1;j2; . . . ;jJþdþ1Þ.
We assume strictly increasing knot values (jk < jkþ1;
k ¼ 1;2; . . . ; J þ d). j and d determine the number and shape of
B-splines. The j-th B-spline bjðsÞ; j ¼ 1;2; . . . ; J is positive only for
s 2 ðjj;jjþdþ1Þ and zero elsewhere [2, pp. 37–42].

The following definitions originate from [2, pp. 47–50 & 65–70]:
Let [jl;jlþ1) be a spline interval and let l denote the spline inter-
val index with dþ 1 6 l 6 J. For s 2 ½jl;jlþ1), the B-splines
bjðsÞ; j ¼ l� d; . . . ;l can be nonzero. Their values for a specific
s 2 ½jl;jlþ1) can be summarized in the B-spline vector

bl;dðsÞ ¼ ðbl�dðsÞ; bl�dþ1ðsÞ; . . . ; blðsÞÞ 2 R1�ðdþ1Þ which can be com-
puted according to (2):

bl;dðsÞ ¼ Bl;1ðsÞ|fflfflffl{zfflfflffl}
2R1�2

Bl;2ðsÞ|fflfflffl{zfflfflffl}
2R2�3

. . . Bl;dðsÞ|fflfflffl{zfflfflffl}
2Rd�ðdþ1Þ

. . . Bl;dðsÞ|fflfflffl{zfflfflffl}
2Rd�ðdþ1Þ

ð2Þ

The B-spline matrix Bl;dðsÞ 2 Rd�ðdþ1Þ is defined for each d 2 N

with d 6 d and given by

Bl;dðsÞ ¼

jlþ1�s
jl�1�jlþ1�d

s�jlþ1�d
jlþ1�klþ1�d 0 . . . 0

0 jlþ2�s
jl�2�jlþ2�d

s�jlþ2�d
jlþ2�jlþ2�d . . . 0

..

. ..
. . .

. . .
.

. . .

0 0 . . .
jlþd�s
jlþd�jl

s�jl
jlþd�jl

2
6666664

3
7777775:

ð3Þ

Table 1
Comparison of different B-spline approximation methods.

Feature WLS (single call) WLS (multiple calls) RLS/KF RBA

Number of processable data points n bounded unbounded unbounded unbounded
Time complexity OðnÞ OðnÞ OðnÞ OðnÞ
Approximation interval fixed variable fixed variable
Determination of total number of coefficients being estimated at beginning during run-time at beginning during run-time
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