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a b s t r a c t

Compound optimum design criteria which allow pure error degrees of freedom may
produce designs that break down when even a single run is missing, if the number of
experimental units is small. The inclusion, in the compound criteria, of a measure of
leverage uniformity is proposed in order to produce designs that aremore robust tomissing
observations. By appropriately choosing the weights of each part of the criterion, robust
designs are obtained that are also highly efficient in terms of other properties. Applications
to various experimental setups show the advantages of the new methods.
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1. Introduction

Processes, products and methods in many areas are discovered and improved by performing controlled experiments in
which the levels of several continuous inputs, experimental factors, are manipulated and at least one outcome is measured.
Empirical models, such as low order polynomials, relating the response to the factor levels have been extremely useful
for interpreting the data from such experiments. Such models and methods are part of the large area of Response Surface
Methodology. Designs for experiments in this setup are known as Response Surface (RS) designs.

It has long been recognized that the experimental design should have several good properties. In the context of RS, Box
and Draper (1975) started a list that was subsequently enlarged (Box and Draper, 1987, 2007) to 14 desired properties, some
of them conflicting, indicating that in practice it is wise and necessary to compromise in order to choose a good design.

On the other hand, optimum design methodologies have concentrated on variance-based criteria such as D-, A- and
I-optimality, the so called alphabetical optimality, see Atkinson et al. (2007) for an account of design criterion definitions.
The use of a single optimality criterion may lead to designs that lack practical appeal. Gilmour and Trinca (2012) re-
defined the alphabetical optimality criteria such that their properties are valid under inferences based on the randomization
process only. They proposed adjustments to the traditional criteria allowing for pure error degrees of freedom in order
to appropriately estimate random variation, the so called DP and AP criteria for instance. However, as recognized by
the authors, these criteria may produce extreme designs with no spare degrees of freedom for inclusion of additional
model terms. They further proposed compound criteria that aggregate into a single function the properties reflecting four
experimental objectives, including a simple component, based on degree of freedom efficiency (Daniel, 1976) to drive the
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design to allow some lack of fit degrees of freedom as well. The use of compound criteria as well as procedures for multiple
objectives (Lu et al., 2011) has the power to produce designs that are very statistically efficient and useful for experimenters.

Concerning the extreme designs produced by using a single property, e.g. DP , it was pointed out by Ridout (2012) that
small designs would break down in case of even onemissing observation from some treatment units. Robustness to missing
observations is closely related to insensitivity towild observations, a desired design property highlighted by Box andDraper.
A design is said to be robust to missing observations if the model parameters are still estimable, without too much loss of
precision, when observations from some experimental units are not available. Just as there are different design optimality
criteria for estimation and for inference, there are different criteria for robustness. Surrogate measures related to the so
called leverages, associated with a regression model, have been used to compare designs in this sense, as well as measures
related to precision.

For example, Box andDraper (1975) studied the connections of the sumof squares of leverages and other designmeasures
and found the best replication of center points and axial point values in central composite designs (CCD). Herzberg and
Andrews (1976) and Andrews and Herzberg (1979) noted that such a measure does not discriminate well between designs
and proposed extendedmeasures incorporating some probability for the event of amissing observation. Akhtar and Prescott
(1986) developed an efficiencymeasure relating theD criterion and the leverages and compared several CCDs, while Ahmad
andGilmour (2010) studied efficiency losswith respect to several optimality criteria due tomissing data fromdifferent types
of points in subset designs (Gilmour, 2006) and Ahmad et al. (2012) did the same for augmented pairs designs. Related
investigations were also presented by Ghosh (1982a,b) who studied robustness of certain designs under sets of s missing
runs and found the maximum s value for given designs. Adding to these works, Ghosh (1983, 1989) proposed measures to
study influence on estimation and prediction of observations. To the best of our knowledge, a property related to robustness
to missing data has not yet been incorporated in a criterion function in order to algorithmically construct an efficient RS
design robust to missing data.

In this paper we incorporate a measure for the contribution of leverages, related to Cook’s distance, in a compound
design criterion in order to prevent the optimal design from being too sensitive to some observations or to breakdown
in case of missing data. We show through several examples that such a property is particularly important in the case of
limited experimental resources. In Section 2, a criterion for assessing design robustness is developed and in Section 3 a brief
description of the algorithm is presented. The proposed criterion is shown to work well in several illustrative experiments
in Section 4. Some final comments are made in Section 5.

2. Efficient and robust designs

Consider a completely randomized design in which there are t treatments, the distinct combinations of levels of q
quantitative factors, to be allocated to n experimental units (t < n), treatment r being replicated nr times (nr ∈

N,
t

r=1 nr = n). The underlying model for the continuous random response variable Y is

yrj = µr + εrj r = 1, 2, . . . , t; j = 1, 2, . . . , nr , (1)

where, in matrix notation, E(ε) = 0 and V(ε) = σ 2I. Once data are collected the fitting of this model allows d = n − t
pure error degrees of freedom to estimate σ 2 unbiasedly. As argued in Box and Draper (2007), in RS experiments we want
to simplify the model and add interpretability by approximating

µr ≈ f(xr)′β r = 1, 2, . . . , t, (2)

where xr is the vector of levels of the q factors defining treatment r (the design experimental points), f is the function
that expands the levels according to the desired approximating function, usually a low order polynomial, and β is the p-
dimensional vector of parameters with its first element being the intercept denoted by β0. Inmatrix notation, letXp = [1|X]
be the n × p model matrix for Eq. (2) where each row of Xp corresponding to treatment r is f(xr)′, 1 is the n dimensional
column vector with all elements equal to 1 and X is a n× (p− 1) matrix.

For theDP design criterion (Gilmour and Trinca, 2012)we shouldminimize

Fp,d;1−α

p
/|X′pXp|, where Fp,d;1−α is the 1−α

quantile of the F distribution with p numerator and d denominator degrees of freedom and 1 − α is the confidence level
of the confidence region for the p-parameter vector β. Other alphabetical optimalities can be defined similarly. Using the
(DP)S criterion, for the case of interest in a subset of p2 (p2 < p) parameters we should minimize


Fp2,d;1−α

p2
|(M−1)22|,

where M = X′pXp and (M−1)22 is the portion of M−1 referring to the subset of p2 parameters of interest. See Atkinson et al.
(2007) for details on DS and other useful design criteria. If we use p2 = p− 1 which drops only the intercept (β0) from the
set of parameters of interest, minimizing |(M−1)22| is equivalent to maximizing |X′QX|, where Q = I − 1

n11
′ and I is the

n× n identity matrix. Focusing on four design objectives, each with a priority weight κl (
4

l=1 κl = 1), representing

1. global F test for treatment effects in β, with significance level α1;
2. partial confidence intervals for each regression parameter each with confidence level of 1− α2;
3. point estimation of each regression parameter; and
4. lack of fit degrees of freedom,
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