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A B S T R A C T

In this work we develop a design-through-analysis methodology by extending the concept of the NURBS-
enhanced finite element method (NEFEM) to volumes bounded by Catmull-Clark subdivision surfaces. The
representation of the boundary as a single watertight manifold facilitates the generation of an external curved
triangular mesh, which is subsequently used to generate the interior volumetric mesh. Following the NEFEM
framework, the basis functions are defined in the physical space and the numerical integration is realized with
a special mapping which takes into account the exact definition of the boundary. Furthermore, an appropriate
quadrature strategy is proposed to deal with the integration of elements adjacent to extraordinary vertices (EVs).
Both theoretical and practical aspects of the implementation are discussed and are supported with numerical
examples.

1. Introduction

From a historical perspective, the development of Computer Aided
Design (CAD) and numerical analysis, also referred to as Computer
Aided Engineering (CAE), have followed different paths. The standard
used to describe objects in CAD are boundary representations (B-reps).
These B-reps are often given by parametric surfaces, commonly based
on Non-Uniform Rational B-Splines (NURBS) [1]. On the other hand,
in numerical analysis, the reference technique is the Finite Element
Method (FEM), where the computational domain is discretized with a
mesh of elements. Within each element, polynomial shape functions are
constructed for the numerical approximation.

The use of different representations, employed by CAD and FEM,
requires the intermediate step of mesh generation which, in many
applications, can drastically slow down the entire analysis process.
In addition, some geometrical features from the original CAD model
may be lost in the FEM representation. As any design-through-analysis
process would clearly benefit from a better integration of these two
fields, uniting CAD and FEM has become an active topic of research.
Major contributions towards this goal are represented by Isogeometric
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Analysis (IgA) [2,3] and the NURBS-Enhanced Finite Element Method
(NEFEM) [4–7].

The key idea of IgA is to use the same basis functions for both the
geometric representation and the numerical analysis. However, limi-
tations arise when the framework is extended to analysis on volumes
— whereas a boundary representation is sufficient for CAD purposes, a
trivariate parametrization is required for the analysis. This parametriza-
tion is not straightforward to construct for complexly shaped objects
because of the tensor product nature of NURBS discretizations. In addi-
tion, many CAD models are a collection of trimmed NURBS patches
that, in general, cannot be stitched together without some small gaps
or overlaps occurring at their interfaces.

In order to overcome the limitations imposed by the tensor product
structure, other parametric boundary representations have been con-
sidered. One of these methods is represented by subdivision surfaces
[8,9], allowing designers to model objects of arbitrary topology as a sin-
gle watertight surface. Many subdivision schemes produce surfaces that
can be numerically evaluated at arbitrary parameter values [10]. Subdi-
vision surfaces were already used for numerical analysis before IgA was
introduced [11,12]. More recent publications consider analysis on sub-
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division solids [13] and the local refinement of subdivision splines [14].
Another option is to use T-splines, which can be seen as a gen-

eralization of NURBS. The original T-splines [15] were developed to
merge two NURBS surfaces defined using different knot vectors (result-
ing in T-sections in the mesh, hence the name T-splines). Later, they
were combined with subdivision surfaces into T-NURCCS [16] using
the NURSS framework [17]. More recent versions of T-splines have
replaced the subdivision approach around irregular points in the con-
trol net (referred to as extraordinary vertices in subdivision terminology
or star points in T-spline terminology) by G1 biquartic patches [18].
An interesting property of T-splines is that they inherently allow local
refinement of the control net. IgA based on T-splines [19] has devel-
oped considerably over the last few years and achieved several notable
results, including the trivariate parametrization of genus-zero objects
[20]. The subset of T-splines used in IgA are referred to as analysis-
suitable T-splines [21].

In parallel to the development of IgA, NEFEM is another methodol-
ogy that aims at reducing the gap between CAD and CAE. In the NEFEM
approach, the shape functions are defined in the physical space and
the exact boundary representation is taken into account in the numer-
ical integration, due to a special volumetric mapping that includes the
NURBS parametrization in its formulation [4]. In contrast to IgA, where
the trivariate parametrization of complex shapes is one of the main
issues, the mesh generation procedure used in the NEFEM framework
follows those of standard FEM, paying special attention to capturing
small geometric features [5]. The only condition that is assumed in the
NEFEM literature is watertightness (G0 continuity) at the interface of
the different surface patches [7]. Unfortunately, as mentioned above,
complicated CAD models often present some small inconsistencies at
such interfaces, which results in complications with regard to FEM mesh
generation. Although some strategies, often referred to as cosmetics, are
available to improve the original CAD model and facilitate mesh gener-
ation, these processes are rarely automatic and require, in most cases,
the supervision of the analyst [22,23].

Motivated by these issues, and taking into account the potential
showed by subdivision surfaces in IgA [24–29], we extend the con-
cept of NEFEM to subdivision surfaces. The main advantage of the
approach is that the mesh can be automatically generated given a sub-
division surface modeled in a CAD environment. Like in the case of
NEFEM, the exact geometry is considered in the analysis and the orig-
inal CAD representation is preserved if p-refinement is applied to the
FEM approximation. This is not the case in standard isoparametric finite
elements, where the error introduced in the discretization remains also
after p-refinement, unless a new mesh is created. At the same time, if
h-refinement is required, the generation of a new mesh is facilitated
by the watertightness of the surface. In this way, even if a mesh is still
used, the conversion between the CAD and the FEM models is no longer
a bottleneck.

Although many subdivision algorithms are available, in this work
we limit our attention to the Catmull-Clark scheme [30], which is the
most widely used scheme in both computer graphics and IgA. The out-
line of the paper is as follows. An overview of subdivision surfaces,
with emphasis on the Catmull-Clark scheme, is presented in Section
2. Section 3 describes the procedure employed for the mesh genera-
tion, while the NEFEM formulation and its extension to subdivisions
surfaces are considered in Section 4. It includes a strategy to han-
dle numerical integration around extraordinary vertices in the surface
mesh. Section 5 discusses various numerical examples. Finally, some
concluding remarks are given in Section 6.

2. Subdivision surfaces

Subdivision surfaces are a powerful tool for designing objects of
arbitrary topology [31]. While they represent the leading technology
for modeling free-form shapes in animated movies [32] and are a com-
mon modeling primitive for 3D games, the use of subdivision surfaces

in CAE is still rather limited. The main reason for this is that most CAD
models used for CAE are based on NURBS. This standard allows for
the design of models including exact conical sections, something which
can only be approximated by traditional subdivision schemes. However,
with the advent of NURBS-compatible subdivision surfaces [33] and the
possibility to convert trimmed NURBS surfaces to subdivision surfaces
[34], the gap between these two standards is closing rapidly. Integrat-
ing subdivision surfaces in a CAD/CAE environment has become a topic
of active research [35].

Similar developments can be seen in commercial CAD/CAE soft-
ware packages. Notable examples include the introduction of the Realize
Shape environment in NX 9, the Mesh Modeler in AUTOCAD 2010, the
Imagine & Shape module in CATIA 5 and the Freestyle extension in PTC
CREO, which are all based on subdivision surfaces.

The use of subdivision surfaces in CAE was first proposed in Ref.
[11]. Other work in a similar framework, by then referred to as IgA,
includes [24–28]. Solving partial differential equations (PDEs) on sub-
division volumes, as opposed to solving PDEs on subdivision surfaces,
is a direction of research only just initiated [13,36]. It is here that we
see the added value of extending the concepts of NEFEM to subdivision
surfaces, as it facilitates the numerical analysis on volumes bounded by
a subdivision surface.

In this paper we focus on the Catmull-Clark subdivision scheme
[30], which is described in the remainder of this section. Combining
the approach discussed in this paper with other subdivision schemes
based on box-splines [37] is straightforward.

2.1. Mesh refinement and smoothing

From a designer’s point of view, a Catmull-Clark subdivision surface
can be interpreted as the result of indefinitely refining and smoothing
an initial mesh 0. Such a mesh, also referred to as the control net,
consists of vertices  , edges  and quadrilateral faces  .

The refinement and smoothing rules are represented by a set of
affine combinations referred to as stencils, indicating how vertices in
a mesh i should be weighted in order to obtain the mesh i+1.
Repeatedly applying the set of stencils to an initial mesh 0 yields
a sequence of meshes 0,1,… ,i,… ,∞. Careful selection of the
stencils results in the convergence of this sequence to a smooth surface
∞ which is referred to as the limit surface. Fig. 1 illustrates a couple of
steps of the Catmull-Clark scheme. Note that for graphical applications
it is often sufficient to subdivide only a few times — the actual limit
surface might not be relevant for such purposes.

2.2. Masks and stencils

From a mathematical point of view, the Catmull-Clark scheme is a
generalization of midpoint knot-refinement for uniform bicubic B-spline
surfaces. In the univariate setting, uniform B-spline basis functions can
be defined using a knot-vector Ξ. This knot-vector is chosen to be a
set of consecutive integers, in other words, Ξ = [j, j + 1,… , k] ⊂ ℤ. Mid-
point knot-refinement consists in inserting the relevant half-integers
ℤ + 1

2 into the knot-vector. Repeating this process i times results in a
knot-vector Ξ ⊂ ℤ∕2i.

Uniform B-splines defined on ℤ∕2i can be composed of scaled,
shifted versions of themselves, each version scaled by a coefficient [38].
In this context, scaled refers to the smaller versions of the uniform B-
splines defined on ℤ∕2i+1. The concept is illustrated in Fig. 2 for the
uniform cubic B-spline N4(t), where the subscript indicates the order
(defined as degree+1) of the B-spline.

When written out, we obtain the expression

(1)
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