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ARTICLE INFO ABSTRACT

Current onsite safety management always relies on time-consuming predefinitions of hazardous zones based on
the managers' personal capabilities. However, in a typical labor-intensive industry such as construction, the
workers themselves can provide a wealth of information for hazard identification. Historical accident-free
working locations on site provide a valuable means of recognizing safe workplaces. This paper presents an
approach to the automated classification of construction site zones derived from the location tracks of workers
collected from a real-time location system (RTLS). Through data mining, filtering and analysis, the location
tracks are transformed into grid density maps and continuous density maps. These illustrate the characteristics of
spatial-temporal activities onsite as well as providing a visual representation of the distribution of safe and
hazardous individual workplaces. A personnel hazard map is generated automatically based on historical
accident-free location tracks from a field project using the proposed approach. Compared with the actual
workplaces in terms of accuracy, precision, sensitivity and specificity, the evaluation result reveals that the
hazardous areas on a construction site can be automatically classified to improve the workplace management of
individual workers. The contributions of this research include an automated zone classification algorithm and an
evaluation framework consisting of four indicators for hazard awareness onsite.
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1. Introduction

Identifying the changing hazards or controlling risks during con-
struction activities is an important, but often quite difficult task. This is
especially the case onsite, even when most of the activities are
conducted repetitively [1], where it is almost impossible to avoid all
the safety hazards in a workspace due to the complex nature of
construction projects [2,3]. Construction sites are also highly dynamic,
with exposed workspaces and their occupation constantly changing,
exacerbating the already serious hazard identification problem for both
the construction site and crew. Since it is uneconomical or ineffective to
employ more safety inspectors, an efficient and automated approach is
needed.

There is an increasing use of personal mobile devices integrated
with geographic location tracking, context-awareness and wireless
communication in the construction industry, and working habits are
changing accordingly. This is providing the potential for accessing a

wealth of information for evaluation, communication and collaboration
onsite. Basic data concerning the continuously changing locations of
communication devices onsite enables the geographic position and
spatial-temporal behavior of workers, materials and equipment to be
monitored by simple manipulation, providing managers and workers
with opportunities for creative initiatives for the collection, tracking
and visualization of onsite construction activities [4-9]. This has given
rise to the introduction of location-based services (LBS) that offer value-
added services for individuals in the form of new utilities embedded in
their personal devices [10]. Properly leveraged, this rich spatial-
temporal information has the potential to improve hazard identification
and the control of risks onsite.

However, the increasing amount of research applying LBS to safety
issues is mostly based on predefined unalterable manual rules.
Proximity hazard indicators between workers, equipment and hazar-
dous areas are widely employed in pro-active real-time construction
systems due to the growing body of evidence indicating that potential
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risks and accidents can be reduced by avoiding working in, or close to, a
dangerous location at a specific time [11-16]. The workspace require-
ments of labor and equipment operations in 3D BIM models are being
generated with increasing precision to improve the efficacy of proxi-
mity alert systems and approaches [17,18]. Although these studies
greatly assist in safety management onsite, pre-construction safety
plans are still insufficiently adequate to cope with the dynamic and
multiple objectives that occur during daily onsite activities. The whole
hazard identification process needs to be involved prior to the applica-
tion of these proximity approaches [2], otherwise, unidentified hazards
will continue to threaten the health and safety of the workforce.
Moreover, the situation is exacerbated by most planners being con-
servative and unable to provide timely updates of hazardous locations
according to changing site conditions.

Since the construction process lasts so long, it is reasonable to
consider the hazard zones to be static at short time intervals.
Accordingly, this study aims to develop an automated approach to
identifying, mapping and updating all of the area-restricted hazards or
safe zones onsite in a timely manner. This involves deriving crucial
historical locations deemed to be safe working zones, such as accident-
free walk paths, by crowd sourcing (workers engaged in similar activities
or in the same group) to assist in individual safety decision-making
[19]. This exploratory approach attempts to classify the entire site into
hazardous and safe zones through a novel peer based approach based on
their frequency of occupation by workers, potentially providing an
available means to reuse the historical data for further prediction in the
short run. On the assumption that areas that have been occupied by
accident-free workers are more likely to be safe areas than otherwise,
the issue then becomes one of identifying such areas. The approach
utilizes data mining and information technology to extract and
integrate density maps from these areas to provide individual guides
to safe zones in the form of personal hazard maps [20].

Consequently, to achieve the objectives of this paper that harness
accident-free work trajectories and safety preferences by like-minded
peers, the rest of the paper is structured as follows. Section 2
investigates the background of the research, containing traditional
hazard identification approaches and potential issues in practice. Then
the core proposed framework consisting of four modules is introduced
in Section 3. Curial zones of workplaces are visualized via density maps
to display their distribution and mark the characteristics of workers
onsite. In Section 4, a field case study is described to demonstrate the
capability to create an automated zone classification map for an
individual worker and evaluate its accuracy. Finally, conclusions and
future research possibilities are provided in the last section.

2. Background

Although the associated root causes of fatal/serious accidents are
well known, including lack of attention, insufficient safety training,
tiredness, poor quality materials and equipment [21], there nonetheless
still exist unidentified hazards or risks that cannot be anticipated prior
to their occurrence. From an external environment perspective, the
hazards are a result of a variety of circumstances, including unexpected
site conditions. The constantly changing dynamic of aggregated vari-
ables onsite also undermines hazard identification [2]. From an internal
worker perspective, different workers share different safe and hazar-
dous zones due to human factors [22,23]. For instance, a ditch on a site
may be a safe working zone for an experienced excavator operator who
understands the work method involved and uses appropriate personal
protective equipment (PPE), but may be a hazardous zone for other
workers. Both perspectives make it impossible to identify all the
hazards involved completely in advance.

Commonly, most accidents onsite are regarded as the result of
contact collisions mainly caused by low awareness and blind spots
[12,24]. Thus, apart from site inspections, proximity safe alert systems
based on real-time location systems (RTLS) have been extremely
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popular and unsafe-proximity identification is widely used to provide
proactive safety management [1]. Spatial interference between person-
nel, related equipment and materials, such as the proximity of labor to
operating heavy equipment or moving vehicles, can be detected or
predicted [5,13], For example, based on onsite dynamics, the analysis
of activities and related hazards, Guo has identified space conflicts by
considering space constraints and path interferences to assist decision-
making [25]; Sacks et al. has designed an algorithm to estimate the
likelihood of spatial and temporal exposure to related hazards [1]; Lee
et al. have developed a radio frequency identification (RFID)-based
RTLS suitable for diverse sites to contribute to aggressive safety
management [16]; and Marks and Teizer propose proximity detection
between workers and equipment [12]. To enhance the efficiency of
proximity safe systems, Kim et al. have developed a human-assisted
obstacle avoidance system during equipment operation [26]; Wang and
Razavi have constructed a low false alarm rate model by adding
position, heading direction and speed attributes [15]; and Cheng
et al. further propose to utilize the fusion of RTLS and physiological
status as well as thoracic posture to activity analysis [27,28]. On the
other hand, Vahdatikhaki and Hammad, Tantisevi and Akinci generate
a dynamic equipment workspace [17,29,30]; Akinci et al. design a
project-specific model to build workspace requirements at the activity-
level [31]; with Zhang et al. then integrating BIM into the 3D
visualization of the workspace requirements to promote the accurate
calculation of proximity [18]. These studies all require the manual pre-
identification of unsafe-proximity prior to applying field-testing, which
is time-consuming and prone to invalidate the approaches due to
unpredicted conditions.

Since it is impossible and uneconomical for managers to identify all
the unsafe-proximity hazards before construction, a novel approach to
extracting spatial-temporal information from historical location tracks
is to use the wealth of information available of the locations of workers,
materials and equipment [32]. This can be conveniently obtained by
utilizing such advanced technology as UWB, RFID and GPS [4,33-35].
A few researchers have attempted to promote proximity safe alert
systems through learning from the spatial-temporal proximity relation-
ships of near misses. Wu et al., for example, have designed an
autonomous system by considering the characteristics of near misses
based on typical historical accident cases [24]; and Teizer and Cheng
have collected and studied near-miss data to provide a proximity
hazard indicator to identify obstacles for route searching and generate
heat maps for safety planning [36,37], which enhances safety knowl-
edge sharing among stakeholders [13]. These studies attempt to
transfer safety knowledge from not only inspectors and managers but
also the workforce itself. However, such approaches commonly view
and serve workers as a community, with often-insensitive unsafe-
proximity recommendations being provided for safety initiatives.

Therefore, an approach that automatically updates according to
movement feedback from specific groups of workers onsite has a
genuine potential to provide the responsiveness required sufficiently
and efficiently. However, a major problem with historical location
resources is that enormous amounts of information have to be examined
in order to find the relevant pieces needed. If the working area of a
worker is safe, then it should also be safe for similar workers under-
taking similar activities at a similar time. Thus, integrating the density
maps of historical accident-free locations should provide a much better
alternative than increasing the number of safety managers onsite.

3. Framework of automated zone classification

The framework of the proposed approach is represented in Fig. 1.
The origin dataset is cloud-stored and contains historical locations, real-
time locations, layout and predefined special zones. It is not compulsory
to input the data in the dot boxes since sometimes workers are new to
the site or adequate detailed information of the geographic attributes of
sites cannot be obtained before construction. The essential assumptions
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