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h i g h l i g h t s

� Waste heat recovery system optimisation is a multi-objective optimisation problem.
� An MOEA is used to optimise a waste heat recovery system.
� Clustering discovers representative trade-offs amongst Pareto-optimal solutions.
� Combining clustering with parallel coordinates eases the analysis of trade-offs.
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a b s t r a c t

A waste heat recovery system (WHRS) is used to capture waste heat released from an industrial process,
and transform the heat into reusable energy. In practice, it can be difficult to identify the optimal form of
a WHRS for a particular installation, since this can depend on various design objectives, which are often
mutually exclusive. More so when the number of objectives is large. To address this problem, a multiob-
jective evolutionary algorithm (MOEA) was used to explore and characterise the trade-off surface within
the design space of a particular WHRS. A combination of clustering algorithm and parallel coordinates
plots was proposed for use in analysing the results. The trade-off surface is first segmented using a clus-
tering algorithm and parallel coordinates plots are then used to both visualise and understand the result-
ing set of Pareto-optimal designs. As a case study, a simulation of a WHRS commonly found in the food
and drinks process industries was developed, comprising of a desuperheater coupled to a hot water reser-
voir. The system was parameterised, considering typical objectives, and the MOEA used to build a library
of alternative Pareto-optimal designs that can be used by installers. The resulting visualisation are used to
better understand the sensitivity of the system’s parameters and their trade-offs, providing another
source of information for prospective installations.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Many energy systems have behaviours that are sensitive to
their parameter values, and these values need to be optimised
[1,2]. Many of these systems also have multiple objectives, and
these are often conflicting, meaning that in practice there is not a
single design that satisfies every objective. In this situation, choos-
ing an appropriate set of parameters first involves understanding
the different trade-offs that can be made within the system’s
design space. One way of doing this is to identify all the solutions
that are no better or worse than each other when considered
across all objectives. This is known as the Pareto optimal set.
Multi-objective optimisation algorithms (MOOA) are a group of

optimisation techniques that are able to find good approximations
of the Pareto optimal set. Because of this, they have become
increasingly popular in the design of engineering systems [3–6],
including the optimisation of energy systems. Examples are
described in [7–17].

A Waste Heat Recovery System (WHRS) captures waste heat
released from an industrial process, storing it in a form that can
later be reused, for example using a hot water reservoir (HWR).
A WHRS is a good example of a system with mutually conflicting
objectives. Common practise in WHRS optimisation involves opti-
mising using conventional single objective methods, typically
Mixed Integer (Non-)Linear Programming (MILP or MINLP)
[18–23]. In cases where there are multiple objectives, these are
scalarised into a single objective. Alternatively, optimisation can
be done using only a single objective, most typically minimising
the cost of the installation and operations summed together, and
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the remaining objectives are implemented as constraints
[18,19,21–23]. Given that single objective optimisation only pro-
vides a single solution, any information on objective trade-offs will
be lost during the optimisation process, and any analysis of how
the parameters affect the system efficiency will also be lost. In this
work, by comparison, a Multi-Objective Evolutionary Algorithm
(MOEA) was used to carry out multi-objective optimisation of a
WHRS, using the results to visualise trade-offs in the design space.

As a case study, a simulation of a type of WHRS commonly
found in the food and drinks process industry was developed,
which involves a desuperheater connected to a HWR, providing
hot water for a production plant’s intermittent internal cleaning
process. After identifying a number of common objectives for this
type of system, the MOEA was used to find a set of trade-off
designs within this objective space.

One disadvantage of MOOA and MOEA approaches is the visual-
isation of results, especially when n number of objectives and u
number of parameters are large. A common method of visualising
the results is to use a scatter plot, or decision maps, as shown in
[14,10,13], but in general these can only show three objectives or
parameters at once, which is limiting. Furthermore, the correlation
between parameter and objective values are not explicitly shown,
and in practice, analysis of the correlation is only applied to a
selected few solutions, as depicted in [7–9]. Typically, they are
the solutions at the extrema of the Pareto-optimal set, giving lim-
ited insight to the attributes of the other Pareto-optimal solutions
found. Consequently many studies limit themselves to n 6 3 objec-
tives, as shown in [9,13,11,17,8].

To aid in the analysis of the results from high-dimensional
multi-objective optimisation, and to identify a reduced set of rep-
resentative designs, this paper proposed an alternative method of
visualising the Pareto-optimal solutions. The solutions are first
clustered into k-number of clusters, either in the design space or
the parameter space, to identify the degree of commonality
between the solutions. For each cluster identified, parallel coordi-
nates [24,25] are used to visualise the high-dimensional solution
space and objective space as a pair of two-dimensional plots; one
for each of the spaces.

Parallel coordinate plots are used to visualise the Pareto-
optimal solutions, each for the u-dimensional solution space and
n-dimensional objective space. The correlation between a solution
and its objective values in a specific cluster are identified by the
common colour used in both plots. This method of visualisation
can therefore reduce the number of figures (and tables) to depict
the results significantly, down to 2k figures – one for each of the
two spaces. The significant reduction in the number of figures used
eases in the analysis of the trade-offs between the Pareto-optimal
solutions.

The paper is organised as follows: Section 2 provides a brief
introduction to the MOOA used in this work. Section 3 introduces
WHRS and gives an overview of the case study. Section 4 presents
results and analysis using various multidimensional visualisation
methods, including decision maps and parallel coordinates plots.
Section 5 concludes the paper.

2. Multi-Objective Evolutionary Algorithm (MOEA)

Whilst many forms of optimisation can be generalised to the
multi-objective case, in practice the most widely used forms of
MOOA are based around evolutionary algorithms (EA). EAs are a
class of population-based metaheuristic optimisation algorithms.
As described in [26]: the initial population is a random sample of
search points, a selection mechanism then discards search points with
poor objective values, and variation operators derive a new population
of search points from those that remain. This new population then
replaces the previous population, and the process of selection and vari-
ation are repeated until an optimal solution is found, or some other
termination criterion is met. The search points, in our case, are vec-
tors of parameter values. The variation operators are crossover,
which recombines two search points by swapping vector elements,
and mutation, which randomly replaces one or more vector ele-
ments to create a new search point. Population-based metaheuris-
tics, such as EAs, carry out a relatively broad search of an
optimisation space, and consequently are often able to find better
solutions than local search metaheuristics, such as hill climbing or
simulated annealing.

A multi-objective evolutionary algorithm (MOEA) is a spe-
cialised form of EA, and in this work, a popular MOEA called
NSGA-II [27] was used. The main difference between NSGA-II and
a single-objective EA lies in how selection takes place. Rather than
only propagating the best search points from one generation to the
next, NSGA-II first carries out a ranking of the search points in the
population. Search points which are no worse than any other when
considered across all the objectives are known as dominating
search points, and are given a rank of 1. Those which are only dom-
inated by rank 1 search points are assigned rank 2, etc. After rank-
ing, the first half of the ordered population is then copied directly
to the next generation, and the remainder of the population is filled
by applying the variation operators.

NSGA-II also uses a diversity preservation method, known as
crowding, to encourage search in regions of objective space which
have not been previously explored. For the search points that are of
the same rank, those that are more dissimilar to the others are pre-
ferred for selection for the next generation population. This not
only results in an approximation of the Pareto optimal set which

Nomenclature

n number of objectives
u number of evolved parameters
k number of clusters
_mwd mass flow rate of water into the DSH/HWR
_mwdmax

maximum mass flow rate of water into the DSH/HWR
mwt mass of water in the HWR
mwtmin minimum mass of water in the HWR
mwtmax maximum mass of water in the HWR
Pb power of the backup heater
Pbmax

maximum power of the backup heater
Thw required/demanded hot water temperature
Tmx maximum water temperature in the HWR
Tm mains water temperature

Tri input refrigerant temperature to the DSH
Tro output refrigerant temperature from the DSH
Twi input water temperature to the DSH
Two output water temperature from the DSH
Twt water temperature in the HWR
DTmax maximum difference between Tmx and Thw
DSH desuperheater
EA evolutionary algorithm
HWR hot water reservoir
MOEA multiobjective evolutionary algorithm
MOOA multiobjective optimisation algorithm
WHRS waste heat recovery system
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