
The Journal of Systems and Software 138 (2018) 37–51

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Empirical validation of cyber-foraging architectural tactics for

surrogate provisioning

Fahimeh Alizadeh Moghaddam

a , b , ∗, Giuseppe Procaccianti a , Grace A. Lewis a , Patricia Lago

a

a Software and Services Research Group, Vrije Universiteit Amsterdam, The Netherlands
b Systems and Network Engineering Research Group, University of Amsterdam, The Netherlands

a r t i c l e i n f o

Article history:

Received 15 June 2016

Revised 14 November 2017

Accepted 21 November 2017

Available online 22 November 2017

Keywords:

Software engineering

Software architecture

Cyber-foraging

Energy efficiency

Resilience

Software sustainability

a b s t r a c t

Background: Cyber-foraging architectural tactics are used to build mobile applications that leverage prox-

imate, intermediate cloud surrogates for computation offload and data staging. Compared to direct ac-

cess to cloud resources, the use of intermediate surrogates improves system qualities such as response

time, energy efficiency, and resilience. However, the state-of-the-art mostly focuses on introducing new

architectural tactics rather than quantitatively comparing the existing tactics, which can help software

architects and software engineers with new insights on each tactic.

Aim: Our work aims at empirically evaluating the architectural tactics for surrogate provisioning, specif-

ically with respect to resilience and energy efficiency.

Method: We follow a systematic experimentation framework to collect relevant data on Static Surrogate

Provisioning and Dynamic Surrogate Provisioning tactics. Our experimentation approach can be reused

for validation of other cyber-foraging tactics. We perform statistical analysis to support our hypotheses,

as compared to baseline measurements with no cyber-foraging tactics deployed.

Results: Our findings show that Static Surrogate Provisioning tactics provide higher resilience than Dy-

namic Surrogate Provisioning tactics for runtime environmental changes. Both surrogate provisioning tac-

tics perform with no significant difference with respect to their energy efficiency. We observe that the

overhead of the runtime optimization algorithm is similar for both tactic types.

Conclusions: The presented quantitative evidence on the impact of different tactics empowers software

architects and software engineers with the ability to make more conscious design decisions. This contri-

bution, as a starting point, emphasizes the use of quantifiable metrics to make better-informed trade-offs

between desired quality attributes. Our next step is to focus on the impact of runtime programmable

infrastructure on the quality of cyber-foraging systems.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

In 2014, the number of mobile users exceeded the num-

ber of desktop users globally, which was about 1.7 billion users

(Bosomworth, 2015). Consequently, many computation tasks are

migrated to handheld devices as mobile apps. Statistics provided

by “The Statistics Portal” forecast approximately 269 billion mobile

app downloads for 2017, which is around 20% more than the pre-

vious year (Statistica., 2013). Although handheld devices are often

selected as the main target for consumers and app developers, they

∗ Corresponding author at: De Boelelaan 1081a, Vrije Universiteit Amsterdam, The

Netherlands.

E-mail addresses: f.alizadehmoghaddam@vu.nl (F. Alizadeh Moghaddam),

g.procaccianti@vu.nl (G. Procaccianti), g.a.lewis@vu.nl (G.A. Lewis), p.lago@vu.nl (P.

Lago).

are still limited in resources in terms of computational power and

battery life.

The importance of extended device battery life has motivated

software architects to introduce Mobile Cloud Computing solutions,

in which the cloud takes charge of compute- and data-intensive

tasks. Although these solutions significantly help to address re-

source limitations, a number of prerequisites need to be met. For

example, a reliable Internet connection must exist between the

handheld device and the cloud, which is not necessarily guar-

anteed in resource-scarce environments. Resource-scarce environ-

ments usually lack stable environmental conditions. Cyber-foraging

has been introduced to enable resource-limited devices to benefit

from available external resources in such environments with dy-

namic conditions.

A number of cyber-foraging tactics have been identified and

categorized in Lewis et al. (2014; 2016) to help software archi-

tects select the best tactics to meet system requirements. In this

https://doi.org/10.1016/j.jss.2017.11.047

0164-1212/© 2017 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jss.2017.11.047
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2017.11.047&domain=pdf
mailto:f.alizadehmoghaddam@vu.nl
mailto:g.procaccianti@vu.nl
mailto:g.a.lewis@vu.nl
mailto:p.lago@vu.nl
https://doi.org/10.1016/j.jss.2017.11.047

38 F. Alizadeh Moghaddam et al. / The Journal of Systems and Software 138 (2018) 37–51

work we particularly focus on the “Surrogate Provisioning” tac-

tics from an experimentation point of view. We study to what

extent the cyber-foraging architectural tactics for surrogate provi-

sioning impact system resilience and energy efficiency. Our find-

ings guide software architects and software engineers to trace the

impact of their design decisions with scientific insights concluded

from quantifiable metrics. Our main contributions are:

• we provide a detailed description of cyber-foraging tactics for

surrogate provisioning;
• we present a runtime optimization algorithm to support surro-

gate provisioning tactics and describe a proof-of-concept imple-

mentation;
• we show the systematic design and execution of our experi-

mentation approach applied to surrogate provisioning, which

can be reused for validating other cyber-foraging architectural

tactics;
• we report on the execution and the results of our empirical

experimentation aimed at quantifying the impact of the cyber-

foraging tactics for surrogate provisioning on resilience and en-

ergy efficiency in a controlled environment;
• we provide an evaluation of the cyber-foraging tactics for sur-

rogate provisioning, emphasizing trade-offs with respect to dif-

ferent system qualities.

This paper is organized as follows: Section 2 presents an

overview of the cyber-foraging architectural tactics. Section 3 fo-

cuses on the surrogate provisioning tactics and how online opti-

mization algorithms play a role in the system. In Section 4 we de-

scribe the scope of the experimentation using the goal, research

questions, and metrics. Section 5 provides details of the planning

steps from different perspectives such as context selection, variable

selection, hypothesis formulation, subject selection, experiment de-

sign, and instrumentation. The steps taken to execute the experi-

ments are explained in Section 6 . In Sections 7 and 8 we present

and discuss our results. Section 9 discusses the implications of our

findings for software architecture. In Section 10 we describe the

possible threats to validity and their mitigation. Section 11 dis-

cusses related work. Finally, Section 12 concludes the paper and

outlines the research direction for our future work.

2. Background

Cyber-foraging is a mechanism that leverages cloud servers, or

local servers called surrogates, to augment the computation and

storage capabilities of resource-limited mobile devices while ex-

tending their battery life (Satyanarayanan, 2001). There are two

main forms of cyber-foraging (Flinn, 2012; Lewis and Lago, 2015a;

Sharifi et al., 2012). One is computation offload, which is the of-

fload of expensive computation in order to extend battery life and

increase computational power. The second is data staging to im-

prove data transfers between mobile devices and the cloud by tem-

porarily staging data in transit on intermediate, proximate nodes.

While cyber-foraging can take place between mobile devices and

cloud resources, our focus is on systems that use intermediate,

proximate surrogates.

The software architecture of a system is the set of structures

needed to reason about the system, which comprise software ele-

ments, relations among them, and properties of both (Bass et al.,

2012). Software architectures are created because a system’s quali-

ties, expressed as functional and non-functional requirements, can

be analyzed and predicted by studying its architecture.

One of the main challenges of building cyber-foraging systems

is the dynamic nature of the environments that they operate in.

For example, the connection to an external resource may not be

available when needed or may become unavailable during a com-

putation offload or data staging operation. As another example,

multiple external resources may be available for a cyber-foraging

system but not all have the required capabilities. Adding capabili-

ties to deal with the dynamicity of the environment has to be bal-

anced against resource consumption on the mobile device so as

to not defeat the benefits of cyber-foraging. Being able to reason

about the behavior of a cyber-foraging system in light of this un-

certainty is key to meeting all its desired qualities, which is why

software architectures are especially important for cyber-foraging

systems.

Given the potential complexity of cyber-foraging systems, it

would be of great value for software architects to have a set of

reusable software architectures and design decisions that can guide

the development of these types of systems, the rationale behind

these decisions, and the external context/environment in which

they were made; this is called architectural knowledge (Kruchten

et al., 2006; Lago and Avgeriou, 2006). One way to capture archi-

tectural knowledge is in the form of software architecture strategies .

We define a software architecture strategy as the set of architec-

tural design decisions that are made in a particular external con-

text/environment to achieve particular system qualities. Software

architecture strategies are codified as architectural tactics that can

be reused in the development of software systems. We define ar-

chitectural tactics as design decisions that influence the achieve-

ment of a system quality (i.e., quality attribute) (Bass et al., 2012).

Software architecture strategies for cyber-foraging systems are

therefore the set of architectural design decisions, codified as

reusable tactics, that can be used in the development of cyber-

foraging systems to achieve particular system qualities such as re-

source optimization, fault tolerance, scalability and security, while

conserving resources on the mobile device (Lewis, 2016).

In previous work we conducted a systematic literature re-

view (SLR) on architectures for cyber-foraging systems (Lewis

et al., 2014; Lewis and Lago, 2015a). The common design deci-

sions present in the cyber-foraging systems identified in the SLR

were codified into functional and non-functional architectural tac-

tics (Lewis and Lago, 2015a; 2015b). Functional tactics are broad

and basic in nature and correspond to the architectural elements

that are necessary to meet cyber-foraging functional requirements.

Non-functional tactics are more specific and correspond to archi-

tecture decisions made to promote certain quality attributes. Non-

functional tactics have to be used in conjunction with functional

tactics.

A cyber-foraging system must have at a minimum the following

combination of functional tactics:

• Computation Offload and/or Data Staging tactics to provide

cyber-foraging functionality.
• A Surrogate Provisioning tactic to provision a surrogate with the

offloaded computation or data staging capabilities.
• A Surrogate Discovery tactic so that the mobile device can lo-

cate a surrogate at runtime.

Then, based on additional functional and non-functional re-

quirements, such as fault tolerance, resource optimization, scala-

bility/elasticity, and security, complementary tactics are selected.

The work in this paper focuses on surrogate provisioning tac-

tics. We compare the different surrogate provisioning tactics from

an architectural point of view with respect to their resilience and

energy efficiency.

3. Surrogate provisioning tactics

3.1. Tactics description

To be able to use a surrogate for cyber-foraging, it has to be

provisioned with the offloaded computation and/or the computa-

tional elements that implement the offloaded computation or en-

https://isiarticles.com/article/148542

