Human-induced changes in the trophic functioning of sandy beaches

Leonardo Lopes Costa⁎, Davi Castro Tavares, Marjorie Cremonez Suciu, Danilo Freitas Rangel, Ilana Rosental Zalmon

Laboratório de Ciências Ambientais, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, RJ, Brazil

1. Introduction

The increasing anthropogenic disturbance on coastal ecosystems has threatened ecological interactions and ecosystem functioning. To investigate if human pressure affects the trophic structure of sandy beaches, mass-balanced models were applied on two Brazilian sandy beaches with distinct human impact degree. The food web models included detritus, phytoplankton, macroinvertebrates, fish, and seabirds. Macroinvertebrates in non-urbanized sectors represented the highest production fraction consumed by predators. The energy transfer and the cycling indicator were more efficient in the non-urbanized sectors than urbanized ones. The results indicate that macroinvertebrates sensitive to direct human impact such as trampling are important to the trophic functioning of sandy beaches. Establishing a threshold for the number of beachgoers or dispersing recreational activities to avoid crowds may be tangible ways to mitigate the trampling impact on macroinvertebrates.
et al., 2015; Cardoso et al., 2016), and they do not usually consider the species interaction and ecosystem functioning. Some studies considered sublethal aspects of macroinvertebrates in response to anthropogenic changes in the environment (Schlacher and Lucrezi, 2010; Scapini et al., 2005; Bessa et al., 2017). However, food web researches on sandy beaches are still scarce (see Lercari et al., 2010; Bergamino et al., 2013; Reyes-Martínez et al., 2014).

Brazilian sandy beaches of distinct morphodynamics near to urban areas have been threatened by several anthropogenic stressors (Amaral et al., 2016). As a consequence, the discrimination of a single impact from broader urbanization pressures and morphodynamics features on beach biota is challenging. However, previous studies on southeastern Brazil showed that trampling associated with recreational activities is the main threat for macroinvertebrates and their predators, despite of minimal physical differences between urbanized and non-urbanized areas (i.e. grain size, beach slope or wave action) (Costa et al., 2017). As a consequence, macroinvertebrate abundance at Grussaí and Praia Grande beaches is usually lower in urbanized beaches than non-urbanized ones (see Machado et al., 2016; Costa et al., 2017).

2. Material and methods

2.1 Study area

The study was conducted on two sandy beaches, Grussaí and Praia Grande, in the municipalities of São João da Barra (21°41’39.80″S 41°1’23.84″W) and Arraial do Cabo (22°58’23″S 42°1’57″W), respectively, in Rio de Janeiro State (RJ), Brazil (Fig. 1). Praia Grande beach is influenced by coastal upwelling, where cold (18 °C) and nutrient-rich water regularly influence the inner continental shelf, resulting in significantly higher biological productivity (Tavares et al., 2016b). The southern limit of the state includes at least four seabird breeding islands, including the Franceses Island, an important breeding ground of Sula leucogaster located 500 m from the Praia Grande Beach (Tavares et al., 2016a). The northern limit comprises mainly a flyway route of the Franceses Island, an important breeding ground of Sula leucogaster located 500 m from the Praia Grande Beach (Tavares et al., 2016a).

Grussaí is an intermediate beach, with the predominance of medium grain size and intense wave action (Machado et al., 2016), while Praia Grande Beach has dissipative morphodynamics, with the predominance of fine/medium sand and gentle slope (Gaedzer and Salmon, 2008). Both beaches have a wide coastal strip with areas under considerable human pressure (urbanized sectors) and others with low visitation rates (non-urbanized sectors) (Machado et al., 2016). Arraial do Cabo municipality has 29,000 inhabitants, but the visitation during the summer season (400,000 people from December to March) is about three times higher than the municipality of São João da Barra in the same period (150,000). São João da Barra municipality has 35,000 inhabitants, but Grussaí Beach has regional touristic appeal.

We used the adapted urbanization index from González et al. (2014) as a proxy for selecting the sectors with different degrees of human pressure (Appendix A). The following categories were considered: 1) proximity to urban centers; 2) buildings in the beachfront; 3) beach cleaning; 4) solid waste in the sand; 5) vehicle traffic in the sand; and 6) frequency of visitors. We did not consider the “quality of night sky” as a category for the calculation of the urbanization index (see González et al., 2014), because all the sectors have wide suprallitoral, so that light poles are far from the beach and sky conditions are optimal for stargazing (score = 0). Gower's method, $X' = (\Sigma X - X_{\text{min}})/\Sigma X$ (max – X min)), was used to calculate the index, where X is the value assigned to each of the six variables and Xmin–Xmax corresponds to the extreme values of the range (0–5 in this case) (Legendre and Legendre, 1998; González et al., 2014). The index ranges from “0” to “1,” where values close to 1 indicate beaches with the highest human pressure. The urbanization level of urbanized beaches is directly associated with highest number of beachgoers in the sampling area (about two people/m²) and reduced environmental quality (Suciú et al., 2017). As a consequence, macroinvertebrate abundance at Grussaí and Praia Grande beaches is usually lower in urbanized beaches than non-urbanized ones (see Machado et al., 2016; Costa et al., 2017).

2.2. Data collection

Food web models included detritus, phytoplankton, macroinvertebrates, fish and seabirds, based on the annual average values of biomass of each group, which was sampled twice in winter of 2015 (June–September) and twice in summer of 2016 (January–March). The information sources of each species or functional group input into the Ecopath software are detailed below and summarized in Table 1.

2.2.1. Detritus and phytoplankton

Phytoplankton and detritus biomass in the water were determined by the concentration of chlorophyll a and organic carbon particulate using images taken by the MODIS instrument on the satellite Aqua (NASA). The resolution of the images is approximately 4.5 km, which allowed the data to be obtained for all sectors and beaches.

The concentration of chlorophyll a in the study areas was converted to phytoplankton dry weight (DW) following the conversion factor: 1 mg of chlorophyll a = 100 mg DW (Reyes-Martínez et al., 2014). The P/B phytoplankton values followed Lercari et al. (2010).

To determine the biomass of sediment detritus, nine aliquots of sediment were collected in each sector during each sampling period. The organic matter content was determined based on the difference between lyophilized sediment and incinerated one at 350 °C for 12 h (loss-on-ignition method by Goldin, 1987). Emerita brasiliensis eggs (EBE) represented the main feeding resource to the fish at Praia Grande Beach (Bode et al., 2003). Thus, we included EBE as a discrete trophic group (detritus) in food web models. The biomass of EBE scraped from females was determined after the eggs were dried at 60 °C for 24 h.

2.2.2. Macroinvertebrates

The macroinvertebrates were collected along three transects (50 m apart) perpendicular to the coastline. Each transect was divided into nine sampling points covering the entire intertidal zone (Machado et al., 2016). Sediment samples were collected using a 20 cm diameter/depth corer (0.188 m²), sieved (1 mm mesh) in the field and fixed in 10% formalin. In the laboratory the organisms were separated, identified, counted, dried at 60 °C for 24 h, and weighed to determine the DW. The P/B ratio was calculated according to empirical relationships following Brey (2001). Brey (2001) is a virtual handbook that provides equations to describe population dynamics, including growth, mortality and production. For this calculation it was necessary to calculate the individual body mass of each species and the annual average seawater temperature in the municipalities of São João da Barra (25 °C) and Arraial do Cabo (24 °C) (Reynolds et al., 2007). The Q/B ratio was calculated by the equation log(Q) = −0.420 + 0.742. log(DW), where DW is the individual dry weight (Cammen, 1980).

2.2.3. Fish

The fish were collected in the surf zone using a beach seine net that was 25 m long and 2.5 m tall, with 10 mm mesh (Costa et al., 2017). The net was hauled parallel to the shore at 1.5 m deep, covering a total area of approximately 500 m². Each sampling period included 10 hauls of five minutes. The fish were fixed in 10% formaldehyde, weighed, identified, and their stomachs dissected to analyze the food items with a
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات