Progress in building-integrated solar thermal systems

Christoph Maurer*, Christoph Cappel, Tilmann E. Kuhn

Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110 Freiburg, Germany

ABSTRACT

Solar building envelopes are attracting increasing interest. Building-integrated solar thermal (BIST) systems are one of the subgroups of solar building envelopes. This paper summarizes the most important contributions of recent years and extends them. First, BIST elements are defined and available BIST elements are presented. Then, the general functions which BIST systems can provide are presented and the conflict between the constant U and g values of simple planning software and the variable g and U values of BIST elements is discussed. Measurements to characterize BIST elements are presented as well as a design parameter space in which the current BIST elements are located and which can be used when developing innovative new components. Methods to evaluate and compare BIST technologies are presented. The substantial cost savings which were achieved in three building projects between 2002 and 2009 are discussed. Roles within the building process are presented, as well as the general methods and challenges for economic BIST calculations and one economic calculation as an example. Based on existing building processes, a vision for future BIST building process integration is presented. Simple BIST models, which need no programming, are provided with easy-to-use equations. The challenges of standards and regulations are outlined and future research topics are presented. This paper summarizes important recent contributions to BIST research as a basis for future progress in building-integrated solar thermal systems. Instead of aiming to cover all recent BIST developments, the focus is on BIST research findings which are relevant for cost reduction of BIST components and therefore necessary for the economic success of BIST technology. These are discussed, together with proposals for future research.

© 2017 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Many papers on building-integrated solar thermal (BIST) systems have been written in the last few decades. This paper aims to present the most important contributions to BIST research, with a special focus on results obtained in the 21st century. It aims to provide an overview of previous progress and the current state of BIST systems to document the starting point for future progress of the BIST approach.

First, building-integrated solar thermal (BIST) systems will be defined in order to clarify the terminology. Then the need for building-integrated solar thermal systems to achieve a cost-effective transformation to a renewable energy system will be outlined. The state of the art will be discussed as well as current challenges and available components.

1.1. Definitions

Most solar thermal collectors on buildings have been installed until now with rear ventilation, which means that there was an air gap between the collector and the rest of the building envelope. This case is sketched in Fig. 1(a). This means that the solar thermal collector is surrounded, to a good approximation, by air of the ambient temperature. Therefore, the efficiency formula of (Cooper and Dunkle, 1980) uses only the ambient temperature and is widely used to calculate the solar thermal performance of such collector installations. When there is no rear ventilation, the case sketched in Fig. 1(b), then the collector performance is also influenced by the temperature of the interior, which needs to be included in the formulas for accurate predictions. In the case of Fig. 1(b), the collector serves as insulation for the building envelope. Therefore, it can be called a “multifunctional building envelope component” with possible benefits from this synergy. However, many building envelopes serve more than one function. Another important difference between the cases of Fig. 1(a) and (b) is that the energy flux between the collector and the interior of the building should be considered in the case of Fig. 1(b), but can typically be neglected in the case of Fig. 1(a). Energy simulation models of non-vented solar thermal installations should thus include the temperature of the interior and the energy flux to the interior.

It would be possible to define “building-integrated” solar thermal as “non-ventilated” solar thermal. However, building
envelopes can offer a large variety of functions, which will be discussed in Section 2.1 in detail. Two examples can illustrate the challenge of finding appropriate definitions. Rear-ventilated collectors can be installed without having a significant effect on the building interior. However, in general, they could be installed to act as acoustic insulation, too. Are they then part of the building envelope and do they need to be included in the definition of building-integrated collectors? Second, if an entire roof or facade is constructed of solar thermal collectors, matching the design of the building, e.g. with its windows, if this is perceived as “the roof” or “the facade” by people looking at the building, but there is rear ventilation, can these collectors really be named “not building-integrated”? Because of the large number of functions of a building envelope, a sharp separation line between “building-integrated” and “not building-integrated” is arbitrary in general. For a detailed analysis of “how building-integrated” an installation is, all the functions need to be evaluated and compared to a typical reference case, including aesthetics as a function of the building envelope. For this, the applicable functions would need to be collected, evaluated, e.g. by points between 0 and 10 and presented as a radar chart. As one example to illustrate this, Fig. 2 presents an installation of semi-transparent solar thermal facade collectors, which provide (at least) the functions of solar thermal performance, aesthetics and classic solar control requirements. Fig. 3 presents a radar chart for these functions. The evaluation of the classic solar control requirements was based on Kuhn (2017) and the evaluation of the aesthetics will be discussed together with Table 1 in Section 1.3.

Definitions already exist like the one for building-integrated photovoltaics (BIPV) from (EN 50583, 2016), which defines BIPV as PV modules which provide a function from the European Construction Product Regulation (European Parliament and European Council, 2011) for the function of the building. If a BIPV module is removed, it needs to be replaced by another building product.
دریافت فوری متن کامل مقاله

امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات