

Available online at www.sciencedirect.com

Energy Procedia 122 (2017) 829-834

www.elsevier.com/locate/procedia

CISBAT 2017 International Conference – Future Buildings & Districts – Energy Efficiency from Nano to Urban Scale, CISBAT 2017 6-8 September 2017, Lausanne, Switzerland

Empirical estimation of the climatic representativeness in two different areas: desert and Mediterranean climates

S. Soutullo^a*, M.N. Sánchez^a, R. Enríquez^a, M.J. Jimenez^a, M.R. Heras^a

^aEnergy Efficient in Buildings Unit. Department of Energy, CIEMAT. Madrid, Spain

Abstract

This paper develops a method, based on the PASCOOL methodology, to evaluate empirically the climatic representativeness of two Spanish locations in different meteorological zones: semi-arid and Mediterranean climates. New Typical Meteorological Years (TMYs) have been created using 10 years of measurement of the principal meteorological variables. Different weighting factors for the computed variables have been considered. The selected TMYs have been obtained minimizing the standard deviation with reference climatic databases of the studied locations and considering the final use of these files. With these assumptions, ambient temperature and global solar radiations have been estimated with the highest weighting factors.

 $\ensuremath{\mathbb{C}}$ 2017 The Authors. Published by Elsevier Ltd.

Peer-review under responsibility of the scientific committee of the CISBAT 2017 International Conference – Future Buildings & Districts – Energy Efficiency from Nano to Urban Scale

Keywords: Climatic representativeness, TMY, weighting factors

1. Introduction

One of the most critical points when assessing the energy performance of a building or a renewable system is the availability of a representative climatic database of the studied areas [1, 2, 3]. These files have been created using the most probable values of the meteorological variables that characterize the atmosphere. Most of the climatic classifications use the systematization of the most frequent values for the meteorological variables but this only

1876-6102
 \odot 2017 The Authors. Published by Elsevier Ltd.

Peer-review under responsibility of the scientific committee of the CISBAT 2017 International Conference – Future Buildings & Districts – Energy Efficiency from Nano to Urban Scale 10.1016/j.egypro.2017.07.415

^{*} Corresponding author. Tel.: +913466344; fax: + 34913466037. *E-mail address:* silvia.soutullo@ciemat.es

delivers general information about the climatology in large geographical areas [4, 5]. Factors such as orography, isolation, ground reflectance, water mass, vegetation or wind regimes can produce large dispersions that modify the general climatic characteristics [6, 7].

Representative climatic files should be created through the treatment of the principal meteorological variables registered by weather stations placed at the studied areas over a long period of time. Databases with at least 10 years of measurements can be considered sufficiently representative of an area and can be used to create a Typical Meteorological Year (TMY).

This paper focuses on the creation of new TMYs for the two Spanish locations studied: Madrid and Tabernas (Almeria). It has been supported by the Spanish research project OMEGA-CM. This process is based on 10 years of measurements and final considerations about the use of the files have been considered.

2. Studied areas

Two Spanish locations in different meteorological zones have been studied: the desert of Tabernas in Almeria and the city of Madrid. The first location is situated in the Solar Platform of Almería (PSA), in Tabernas, Almeria, south-east of Spain. This is a semi-arid zone with high daily thermal oscillations, hot and dry summers and cold winters. The second location is at the CIEMAT facilities in Madrid, in the center of Spain, where a Mediterranean climate with mild cool winters and hot summers prevails.

The experimental campaigns to calculate the Typical Meteorological Years for each location have taken place from 2006 to 2015. Outdoor conditions are measured with two weather stations installed at CIEMAT and PSA facilities. Meteorological variables such as global horizontal solar radiation, longwave radiation, air temperature, relative humidity, wind speed and direction and CO_2 concentration are measured [8].

A first pre-processing of the measured data has been done to eliminate outliers and identify trends, variances and extreme values. Table 1 shows the annual mean values for the principal meteorological variables for Madrid and Tabernas (Almeria).

Location	Dessert of Tabernas	Madrid
Köppen-Geiger classification	BWk	Csa
Annual temperature +standard deviation	17.3±1.2°C	15.8±1.6°C
Annual relative humidity +standard deviation	55±7%	47±15%
Annual global solar radiation +standard deviation	1817±168 kWh/m ²	1630±167 kWh/m ²
Annual wind speed +standard deviation	2.6±0.3 m/s	1.3±0.4 m/s
Annual wind direction +standard deviation	156±28°	183±18°

Table 1. Meteorological databases for the two studied locations recorded from 2006 to 2015.

In order to quantify the years with higher dispersion from the mean values, every monthly value and standard deviation above and below the studied variables of the analyzed period have been evaluated. Table 2 presents the years with highest percentage of months above and below the mean values \pm standard deviations and highlights the month with the highest dispersion of the studied period.

Table 2. Dispersion from the mean values for the two studied locations recorded from 2006 to 2015.

Variable	Deviation from the	Dessert of Tabernas		Madrid	
	monthly mean values	Highest percentages	Highest dispersion	Highest percentages	Highest dispersion
Air temperature	T + standard deviation	42% 2012	April 2014	58% 2014	July 2015
	T - standard deviation	58% 2008	November 2008	58% 2007	September 2008
Relative humidity	HR + standard deviation	42% 2010	May 2006	33% 2006	May 2008
	HR - standard deviation	42% 2014	February 2012	100% 2012	December 2012
Global	Ig + standard deviation	33% 2013	December 2007	50% 2006	February 2012

دريافت فورى 🛶 متن كامل مقاله

- امکان دانلود نسخه تمام متن مقالات انگلیسی
 امکان دانلود نسخه ترجمه شده مقالات
 پذیرش سفارش ترجمه تخصصی
 امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
 امکان دانلود رایگان ۲ صفحه اول هر مقاله
 امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
 دانلود فوری مقاله پس از پرداخت آنلاین
 پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات
- ISIArticles مرجع مقالات تخصصی ایران