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a b s t r a c t 

Simulating multi-body dynamics with both rigid and flexible parts and with frictional contacts is a hard 

problem. We solve this by expressing the couplings between the bodies as position level constraints. The 

implicit treatment of the constraint directions gives us improved stability over velocity based methods. 

Then by employing regularization of nonlinear constraints and a convex minimization formulation, we 

bridge constraint-based methods to traditional force-based methods. In fact, the former are just a dual 

variables formulation of the latter. We solve this dual problem using position based dynamics (PBD). We 

show how PBD is a completely valid modeling technique and we extend it with an accurate contact and 

Coulomb friction model. We further show for the first time how the same solver can be used to simu- 

late both rigid and deformable solids with two way coupling. For the soft bodies we introduce a novel 

form of linear finite elements expressed as constraints, that is more accurate than PBD mass-spring sys- 

tems. More of our results include the energy conserving Newmark integrator and the accelerated Jacobi 

solver suitable for parallel architectures. Note that this paper is an extended and revised version of the 

conference paper published in [1]. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 1 

For the last decade position based dynamics (PBD) has been 2 

successfully applied to the simulation of particle systems and de- 3 

formable bodies [2] . This was possible given the inherent stabil- 4 

ity of the method due to its full implicit formulation: not only the 5 

magnitude of the constraint forces are considered implicit, but also 6 

their directions [3] . This is especially true for materials with fast 7 

changing constraint gradients and transverse oscillations, e.g. cloth 8 

or threads [4] . 9 

At its heart, PBD is a nonlinear constraint projection scheme, 10 

similar to the ones used in molecular dynamics [5] . The main 11 

drawback of PBD is that it has no rigorous mathematical model for 12 

contact and friction and thus it is almost never used for rigid body 13 

simulations (with the exception of [6] ). In our literature research 14 

we have not found any clear proof for the convergence of a PBD- 15 

like method with unilateral constraints and friction. Because of 16 

this, some authors choose to treat contacts as bilateral constraints 17 

[3] or approximate friction at the end of the step [7,8] without giv- 18 

ing a sound recipe for mixing friction with the position corrections. 19 

This paper reiterates our existing work in [1] and brings some ex- 20 

tensions to it. 21 

We offer not only an accurate treatment of contact and fric- 22 

tion, but we also simulate deformable bodies in a physically cor- 23 
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rect manner using the theory of continua and the finite element 24 

method (FEM). By employing the constraint regularization tech- 25 

nique [9] at position level, we are able to show that our constraint 26 

solving problem is just the dual variables formulation of an equiv- 27 

alent elasticity problem. In the end, we are able to unify the sim- 28 

ulation of rigid and deformable solids under the umbrella of PBD, 29 

using constraints as building blocks. 30 

1.1. Related work 31 

There has been a wealth of work published on the subject of 32 

rigid body simulation with contact and friction - for a survey see 33 

[10] . We note the advances made in the 90s by Baraff, Stewart 34 

and Anitescu. Given the drawbacks of penalty forces, Baraff in- 35 

troduced the acceleration based linear complementarity problem 36 

(LCP) method. This method had its problems too (related to im- 37 

pacts and the Painlevé paradox) that were later solved by a veloc- 38 

ity based approach that allows discontinuities in the velocities, i.e. 39 

impulses. The new velocity time stepping (VTS) schemes [11,12] be- 40 

came very popular in computer graphics, games and real time sim- 41 

ulators. We take a similar approach in this paper, but based on 42 

more recent work geared towards convex optimization [13–15] , 43 

although expressing the problem as such an optimization is not 44 

mandatory. 45 

Traditionally in computer graphics deformable bodies have 46 

been simulated using implicit integrators due to their uncondi- 47 

tional stability properties. These have been applied not only to 48 
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Fig. 1. From left to right: rigid boxes falling on ground, bunnies falling on a piece of cloth, a flexible cow falling on ground. 

mass-spring systems, but also to simulations using finite differ- 49 

ences or the finite element method (FEM) [16] . Recently, the pop- 50 

ular Backward Euler integrator has been recast as an optimization 51 

problem [17] helping us to gain new insights. 52 

While initially constraint based methods were not considered 53 

for simulating deformable bodies, this changed with the advent of 54 

PBD [7] and constraint regularization [9] . PBD was originally intro- 55 

duced by Jakobsen for games based on molecular dynamics meth- 56 

ods and a nonlinear version of the Stewart –Trinkle solver for rigid 57 

bodies [8] . Goldenthal later showed how PBD stems from the fully 58 

implicit integration of a constrained system [3] . Even though in 59 

theory constraints do not allow deformation for all the degrees of 60 

freedom (often resulting in locking [18] ), in practice, they proved 61 

quite successful for simulating a wide range of objects (e.g. cloth, 62 

hair, soft bodies - see [2] for a survey). This is due to the fact that 63 

iterative solvers are often not run to convergence and this makes 64 

the constraints soft. 65 

The idea of a unified solver is not new and our simulator bears 66 

maybe most similarity to Autodesk Maya’s Nucleus. Our results are 67 

also along the line of more recent PBD work [6,19–21] and Projec- 68 

tive Dynamics [17] . 69 

A great job of emphasizing the role of nonlinearity for achiev- 70 

ing stability was done in [22] - or rather the importance of using 71 

a full implicit integration of nonlinear forces. Keeping the implicit 72 

formulation intact is also the idea in [4] and the fact that dissi- 73 

pation (even if artificial) is key to the stability of the system is 74 

stressed in [23] . We pursue a similar approach, but rely mostly on 75 

updating the constraint directions at every iteration, without alter- 76 

ing the mass matrix. 77 

1.2. Contributions 78 

We aim in this paper to show that PBD is a physically sound 79 

method. This is done in Section 2 where we introduce a fixed point 80 

iteration and prove it converges in Appendix A . Also, PBD can be 81 

used for both rigid and deformable bodies with constraints, contact 82 

and friction in a single unified solver. The advantages of this for- 83 

mulation include better constraint satisfaction, improved stability 84 

and out of the box two way coupling of rigid and elastic materials. 85 

In addition to [1] , we explain more in depth why the method is so 86 

robust and how it can be made more conservative while maintain- 87 

ing its stability properties. Another new sub-section explains how 88 

our method is not bound to a minimization formulation and can 89 

also be recast as a fixed point iteration of a box LCP solver. 90 

Our new viscoelastic model permits us to incorporate soft 91 

constraints, damping and FEM into PBD - for applications see 92 

Section 3 . Another goal we had in mind was to keep the computa- 93 

tional overhead to a minimum compared to existing methods. This 94 

is why we chose our mathematical formulation to be expressible 95 

as a matrix-free solver. We present a novel projected gradient de- 96 

scent algorithm for nonlinear optimization in Section 4 . The algo- 97 

rithm is based on both the Jacobi and the Nesterov methods so 98 

it can be parallelized. In Section 5 we continue to give some more 99 

details on how to implement this solver (or a Gauss –Seidel one) for 100 

specific examples like the frictional contact constraint or the FEM 101 

tetrahedron constraint. In the end we give some code implementa- 102 

tion notes and take a closer look at our results. As an extension to 103 

[1] , we added some extra figures, plots and comments proving the 104 

nice stability and energy conservation properties of our solver. 105 

2. Mathematical model 106 

2.1. Equations of motion 107 

In this section we present the continuous equations of motion 108 

and a way to discretize them that will be the basis of our further 109 

developments. We start with the equations of motion for a gen- 110 

eral system of bodies and, at first, we also introduce bilateral con- 111 

straints between the bodies: general nonlinear functions equated 112 

to zero, describing for example a bead on a wire or joints articulat- 113 

ing rigid bodies. The resulting equations can also be derived from 114 

Hamilton’s principle and the principle of virtual work by using a 115 

Lagrangian augmented by a special constraint potential: −γT �(q ) 116 

[11] . They form a special type of differential algebraic equations 117 

(DAE) [24] 118 

M ̇

 v = f tot + ∇ �(q ) γ, (1) 

119 
˙ q = ζ (q ) v , (2) 

120 
�(q ) = 0 , (3) 

where v ∈ R 

n is the generalized velocity vector, n is the number of 121 

degrees of freedom of the system, q ∈ R 

n ′ is the generalized posi- 122 

tion vector ( n ′ ≥ n is the optimal number of parameters describing 123 

position and orientation), ζ is a linear kinematic mapping between 124 

velocities and position derivatives, M is the mass matrix [10] , �( q ) 125 

is a vector-valued bilateral constraint function, ∇�( q ) is its gradi- 126 

ent (i.e. the constraint directions), γ ∈ R 

m is a Lagrange multipliers 127 

vector enforcing the bilateral constraints in (3) ( m is the number 128 

of constraints), and f tot is the total generalized force acting on the 129 

system (external and Coriolis). 130 

In order to discretize the equations of motion we use the Im- 131 

plicit Euler (IE) integrator 132 

M (v l+1 − v l ) = h ∇ �(q 

l+1 ) γ l+1 + h f l tot , (4) 

133 
q 

l+1 = q 

l + h Lv l+1 , (5) 

134 
�(q 

l+1 ) = 0 , (6) 

where l is the current simulation frame, h is the time step (consid- 135 

ered constant), and L ( q 

l ) is a linear kinematic mapping [10] with 136 

L T L = 1 (the identity matrix). The IE discretized equations can be 137 

brought to a minimization form 138 

v l+1 = arg min 

�(q l + h Lv )= 0 
1 
2 

v T Mv − ˆ f T v , (7) 

where ˆ f = Mv l + h f l tot and the new positions come from (5) . 139 
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