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a b s t r a c t

We consider the problem of estimating the states of weakly coupled linear systems from sampled
measurements. We assume that the total capacity available to the sensors to transmit their samples to a
network manager in charge of the estimation is bounded above, and that each sample requires the same
amount of communication. Our goal is then to find an optimal allocation of the capacity to the sensors
so that the time-averaged estimation error is minimized. We show that when the total available channel
capacity is large, this resource allocation problem can be recast as a strictly convex optimization problem,
andhence there exists a unique optimal allocation of the capacity.We further investigate how this optimal
allocation varies as the available capacity increases. In particular, we show that if the coupling among the
subsystems isweak, then the sampling rate allocated to each sensor is nondecreasing in the total sampling
rate, and is strictly increasing if and only if the total sampling rate exceeds a certain threshold.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

This paper addresses situations in which a network manager is
tasked with estimating the state of an ensemble of weakly inter-
connected linear systems. For the estimation to be performed, the
systems send sampled measurements to the network manager
over a shared communication channel. Because this communica-
tion channel has a finite capacity, we seek to optimize the allo-
cation of channel capacity to each sensor in order to minimize
the total estimation error. We work under the assumption that the
samples sent by the subsystems all take the same, fixed amount of
bandwidth.

To proceed, we first describe the model adopted in precise
terms. We consider N weakly-coupled stochastic linear systems
with sampled outputs

Si :=

⎧⎪⎪⎨⎪⎪⎩
dxi =

⎛⎝Aixi + ϵ
∑
j̸=i

Aijxj

⎞⎠ dt + Gidwi

yi(kτ0) = c̄⊤

i xi(kτ0) + vi(kτ0),

(1)
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where τ0 > 0 is the sampling period (1/τ0 > 0 is the sampling
rate) of the sensors and k is a positive integer. We have that
Ai, Aij ∈ Rn×n, c̄i ∈ Rn×p, and Gi ∈ Rn×n, and that |ϵ| is small. The
assumptions that the subsystems have the same state-dimension
n and the outputs yi have the same dimension p for all i, and
the assumption that the coupling parameter ϵ is the same for all
pair (i, j), for i ̸= j, are made to simplify the presentation of
the results, but are not necessary for them to hold. The wi’s are
pairwise independent standard Wiener processes and the vi(kτ0)
are pairwise independent normal random variables. The wi and
vi are also assumed to be independent. We refer to the system
described in (1) as subsystem Si.

The samples yi(kτ0), k ∈ N, are sent over a common channel
to a network manager whose objective is to estimate the states
xi of the subsystems Si, for all i = 1, . . . ,N , from these samples.
The network manager needs to decide the schedule with which it
receives the samples in order to minimize the estimation error.
It is important to note that since the systems are coupled, the
knowledge of yi can help with the estimation of xj, for i ̸= j.
Problem description. We now describe in detail the scheduling
problem that the network manager has to solve. See Fig. 1 for
an illustration. The network manager has at his disposal N linear
sensors from which he can request samples in order to estimate
the states of the subsystems. We only consider periodic schedules:
we assume that over a fixed scheduling period τ > 0, the network
manager can request up to rtot = r1 + r2 + · · · + rN samples from
the sensors, where ri is the number of samples from the ith sensor,
and over the following scheduling period τ , the same requests are
made.We furthermore assume that the ri’s are bounded belowby a
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Fig. 1. Over a scheduling period τ > 0, there are rtot slots available to S1 and S2 to send their samples to a network manager in charge of the estimation.

positive number rmin. We thus have τ = rtotτ0 and we can assume
that the time-period τ is then divided evenly into rtot time slots.
In each time slot, the network manager can only have one sample
sent over the common channel from one of theN sensors. Thus, the
problem faced by the network manager is to decide how to assign
these rtot slots to the sensors to send their samples tominimize the
estimation error.

We note here that the problem has two natural scales, τ and τ0
which are proportional to each other, with ratio rtot. We use the
following notation to refer to the time slots. The sub-index l refers
to the current position within a time period, and the main index
k refers to the current scheduling period. More specifically, for an
arbitrary time signal s(t), we let

s(l)(k) := s((krtot + l)τ0) (2)

where l is only allowed to take values in the set {0, . . . , rtot − 1}.
We illustrate the convention in Fig. 1 for the case N = 2. With this
convention, we can write the output of the ith sensor as

yi,(l)(k) = c̄⊤

i x(l)(k) + vi,(l)(k), (3)

where the vi,(l)(k)’s are pairwise independent normal variables.
We call an allocation strategy an assignment of the time slots

to the sensors over a scheduling period τ , and denote by R the set
of all possible allocation strategies. We callR the strategy set. Our
objective is thus to find an allocation strategy that minimizes the
time-averaged (infinite horizon) estimation error. We refer to this
problem as the optimal allocation problem. A precise formulation
of the problem is presented in Section 2. As can be seen from its
description, the main difficulty of the problem is a computational
one, andwewill see below thatmost of thework dealswith finding
methods to reduce the complexity.
State of the art. The optimal allocation problem,which is known as
the optimal scheduling problem when the dynamics of the state x
is in discrete-time, has been a subject of study for the past few
decades. Among its numerous applications in networked control
and estimation, we mention localization of mobile robot forma-
tions (Mourikis & Roumeliotis, 2006), navigation of underwater
vehicles using sonar sensors (Meduna, Rock, & McEwen, 2008),
target tracking (He&Chong, 2006), and trajectory planning (Singh,
Kantas, Vo, Doucet, & Evans, 2007), to name just a few. Because
of its widespread relevance, there have been continuing efforts to
design efficient algorithms to optimize the allocation of the sensing
bandwidth.

We firstmention the seminal work (Meier, Peschon, & Dressler,
1967) by Meier, Peschon, and Dressler: the authors there consid-
ered a discrete-time linear control system with multiple sensors,
where only one sensor can be used at each time step. Their ob-
jective was to determine the schedule of the sensors in order to
minimize the total estimation error over a finite horizon. They
proposed in that work a method based on dynamic programming
to obtain an optimal schedule. However, such a method is of-
ten computationally intractable when the number of sensors is
large and schedule horizon is long (here, N and rtot are large).

Following (Meier et al., 1967), various methods have been es-
tablished to reduce the computational complexity. Among the
deterministic methods, greedy algorithms have been used to find
suboptimal solutions (see, for example, Chhetri, Morrell, &
Papandreou-Suppappola, 2007; Kagami & Ishikawa, 2006; Osh-
man, 1994). A different strand of algorithms is based on the ob-
servation that the scheduling problem is a tree-search problem.
Algorithms in this category rely on pruning of the tree-search (Vi-
tus, Zhang, Abate, Hu, & Tomlin, 2012), which yields trade-offs
between the quality of the solution and the complexity of the
algorithm through a tuning parameter. We further refer to Alriks-
son and Rantzer, 2005 for a suboptimal algorithm using relaxed
dynamic programming.

In addition to the deterministic algorithms mentioned above,
stochastic methods to handle the computational complexity of
the optimal scheduling problem have also been developed. For
example, the authors in Gupta, Chung, Hassibi, and Murray, 2006
select a sensor randomly at each time step according to a carefully
defined probability distribution: an upper-bound for the expected
value of the steady-state estimation error is then established,
and the probability distribution is chosen so as to minimize the
upper-bound. In He and Chong, 2006, the authors proposed a
Monte-Carlo method, and in Singh et al., 2007, a more empirical,
simulation-based approach. Finally, we point out that the optimal
scheduling problem has been investigated for specific nonlinear
processes as well. For example, Baras and Bensoussan, 1989 estab-
lished the existence of an optimal solution for nonlinear diffusion
processes.

Closer to this paper is the work on periodic scheduling of
actuators and/or sensors (Brockett, 1995; Han, Wu, Zhang, & Shi,
2017; Jiang, Zou, & Zhang, 2008; Shi & Chen, 2013a, 2013b; Zhang
& Hristu-Varsakelis, 2005, 2006). We first mention the seminal
work (Brockett, 1995),where the author introduced the notion of a
(periodic) communication sequence (which is what we called the
allocation strategy in this paper) and investigated the problem of
how to design the sequence so as to stabilize a networked control
system. The idea has then been further explored in Jiang et al.,
2008; Zhang and Hristu-Varsakelis, 2005, 2006 where issues of
controllability, observability and feedback stabilizability have all
been addressed to some extent. The most closely related works
are Han et al., 2017; Shi and Chen, 2013a, 2013b; the authors
in Shi & Chen, 2013a investigated the problem of optimizing
over all periodic allocation strategies so as to minimize the time-
average infinite-horizon estimation error using a discrete-time
linear stochastic system. Unlike what is done here, the authors
assumed that each pair (A, c̄i) is detectable and imposed a min-
imum dwell-time condition on each sensor, i.e. each sensor is
selected for at least a few consecutive samples. In particular, the
dwell-time has to be large enough so that the error covariance
matrix converges to a positive semi-definite matrix that is ϵ-close
to the steady-state of the associated algebraic Riccati equation.
The authors then approximated the original optimization prob-
lem by replacing every transient error covariance matrix with the
corresponding steady-state. In contrast, none of the pairs (A, c̄i)
needs to be detectable in our work and no dwell-time constraint
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