
Contents lists available at ScienceDirect

Swarm and Evolutionary Computation

journal homepage: www.elsevier.com/locate/swevo

A survey on multi-objective evolutionary algorithms for the solution of the
environmental/economic dispatch problems

B.Y. Qua,b, Y.S. Zhua,c, Y.C. Jiaoa, M.Y. Wua, P.N. Suganthand, J.J. Lianga,c,⁎

a School of Electrical and Information Engineering, Zhongyuan University of Technology, 450007, China
b School of Information Engineering, Zhengzhou University, 450001, China
c School of Electrical Engineering, Zhengzhou University, 450001, China
d School of Electrical and Electronic Engineering, Nanyang Technological University, 639798, Singapore

A R T I C L E I N F O

Keywords:
Evolutionary algorithms (EAs)
Multi-objective evolutionary algorithms
(MOEAs)
Environmental economic dispatch (EED)
Wind power
Electric vehicles
Multi-objective optimization

A B S T R A C T

Development of efficient multi-objective evolutionary algorithms (MOEAs) has provided effective tools to solve
environmental/economic dispatch (EED) problems. EED is a highly constrained complex bi-objective
optimization problem. Since 1990s, numerous publications have reported the applications of MOEAs to solve
the EED problems. This paper surveys the state-of-the-art of research related to this direction. It covers topics of
typical MOEAs, classical EED problems, Dynamic EED problems, EED problems incorporating wind power,
EED problems incorporating electric vehicles and EED problems within micro-grids. In addition, some
potential directions for future research are also presented.

1. Introduction

In recent decades, the highly constrained nonlinear multi-objective
optimization problem known as environmental/economic dispatch
(EED) problem has attracted research efforts due to the increasing
concerns about environmental pollution. EED is a bi-objective problem
with two conflicting objectives which are the minimization of genera-
tion cost and pollution emission. Various approaches have been
reported in literature to handle the EED problem.

Initially, conventional optimization methods such as linear pro-
gramming techniques were mainly used as the optimizing tool for
solving the EED problem [1,2]. However, these methods are not
effective when the dispatch problem becomes complex. Hence, re-
searchers turned to artificial intelligent techniques especially evolu-
tionary algorithms (EAs) and swarm algorithms (SAs). These meta-
heuristics use mechanisms inspired by Darwinian Theory of biological
evolution and social interactions, respectively. The studies have shown
that EAs and SAs can effectively overcome most of the drawbacks of
classical method. EAs and SAs have been successfully adopted to solve
various kinds of power dispatch problems [3–11].

Since EAs and SAs use a population of solutions to conduct the
search process, multiple non-dominated solutions can be found in one
single run. Moreover, EAs and SAs require few domain information of
the given problem. These features are attractive for solving complex

multi-objective EED optimization problems. Numerous multi-objective
evolutionary algorithms (MOEAs) have been suggested to solve the
EED problem [12–15]. The aim of this paper is to provide a broad view
of using MOEAs in EED applications and encourage researchers in
power application domains to benefit from further use of MOEAs. The
taxonomy adopted in this paper is based on the topics reviewed and it
is divided into 5 parts. The first one studies the classical EED problems
using MOEAs while the remaining sections reviews other types of the
EED applications.

The remainder of this paper is organized as follows. Section 2
provides a brief introduction of multi-objective optimization and the
state-of-the-art MOEAs. Sections 3–7 present MOEAs for the classical
EED problems, Dynamic EED problems, EED problems with wind
power, EED problems with electric vehicles and EED problems within a
micro-grid, respectively. The paper is concluded in Section 8.

2. Multi-objective optimization

In this part, the basic concepts of multi-objective optimization and
some typical MOEAs are introduced.

2.1. Formulation of multi-objective optimization problems

The multi-objective optimization problems (MOPs) can be mathe-
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matically formulated as follows assuming as minimization problems:
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where x Rx x x X= ( , , ..., ) ∈ ⊂n
n

1 2 is the vector of decision variables,
which constitute the decision space X , and Rn is an n dimensional
Euclidean space; y Y Ry y y= ( , , ..., ) ∈ ⊂m

m
1 2 is the vector of objectives,

which constitute the objective space Y ; xg j p( ) ≤ 0( = 1, 2, ..., )j and
xh k q( ) = 0( = 1, 2, ..., )k are the constraint functions of the problem.
To solve multi-objective optimization problems, the following

concepts are essential.
Feasible solution set: For x X∈ , if x satisfies all constraints, x

is a feasible solution and the set of all feasible solutions is the feasible
solution set, denoted as Xf , where X X⊆f .

Domination: Given two feasible solutions x1 and x2, we say that x1
dominates x2(denoted as x x≺1 2), if x xi m f f∀ ∈ {1, 2, ..., }, ( ) ≤ ( )i i1 2 ,

i m∃ ∈ {1, 2, ..., }, x xf f( ) < ( )i i1 2 .
Pareto-optimal set: For a feasible solution x X⊆ , if there does

not exist another feasible solution x X′ ⊆ satisfying xx′≺ , we say that x
is non-dominated with respect to X , and this feasible solution x is
defined as a Pareto-optimal solution as x*. The set of all Pareto-optimal
solutions is defined as the Pareto-optimal set denoted as P*, i.
e., x x x xP X* = { * ¬ ∃ ∈ : ≺ *}.

Pareto-optimal front: The Pareto-optimal front is defined as PF ,
where F x x x x xP f f f P= { ( *) = [ ( *), ( *), ..., ( *)] * ∈ *}F m

T
1 2 .

Based on the above concepts, obtaining the Pareto-optimal set is
the key task of multi-objective optimization algorithms.

2.2. Typical MOEAs for solving EED problem

EAs and SAs are stochastic optimization techniques inspired by the
natural evolutionary and swarming processes. Due to their own
properties, they are more suitable for solving MOPs than other
conventional mathematical techniques. Since early 1990s, researchers
proposed numerous Multi-objective Evolutionary Algorithms (MOEAs)
and used them to solve complex MOPs. In this section, we aim to
present a short review of some typical MOEAs especially those used for
solving the EED problems. These MOEAs are presented in the
chronological order.

(1) Vector Evaluated Genetic Algorithm (VEGA) [16]: VEGA is
commonly known as the first MOEA. It modifies the original
genetic algorithm to make it capable of handling multi-objective
optimization problems. In VEGA, the population is divided into
several subpopulations and the number of subpopulations is equal
to the number of objectives. Each subpopulation is responsible for
searching one objective. While the concept of this algorithm is
straightforward, the solutions obtained by this technique are
usually not uniformly distributed along the Pareto front especially
in the tradeoff regions.

(2) Non-dominated Sorting Genetic Algorithm (NSGA) [14,17]: NSGA
was introduced by Srinivas and Deb in 1994. This method uses
ranking selection and niching techniques to find the non-domi-
nated solutions and maintain the diversity of the population. Two
main steps are involved in this method known as fitness assign-
ment and fitness sharing. Fitness assignment helps fast conver-
gence while fitness sharing increase the diversity.

(3) Multi-Objective Stochastic Search Technique (MOSST) [13]: The
MOSST heuristic has been designed as a combination of real coded
genetic algorithm (GA) and simulated annealing (SA) techniques.
It incorporates a genetic crossover operator BLX-α and a problem
specific mutation operator with a local search heuristic to provide a
better search capability [13]. It can offer the advantages of both GA
and SA.

(4) Non-dominated Sorting Genetic Algorithm II (NSGA-II) [18]:
NSGA-II is the most popular multi-objective evolutionary algo-
rithm. The dominance concept is used in NSGA-II to sort/rank the
solutions. Moreover, it uses crowding distance to estimate the
density of solutions near each solution. NSGA-II uses both the
non-domination rank and crowding distance to select individuals
to survive to the next generation.

(5) Niched Pareto Genetic Algorithm (NPGA) [19]: NPGA uses Pareto
domination tournaments selection scheme to find the good solu-
tions and remove the bad ones. Different from the method used in
[17], only two candidates are randomly picked for tournament
each time. To compare the two candidates, a randomly selected
comparison set is used. Then, the dominance of both individuals
with respect to the comparison set is checked. Sharing procedure
will be used if both individuals are dominated by the comparison
set.

(6) Multi-objective Particle Swarm Optimization (MOPSO) [20]:
MOPSO is a variation of the PSO to solve MOPs [21].
Determining global best (gbest) is the key issue of MOPSO.
MOPSO uses the non-dominated solutions as the basis of selecting
the gbest. The algorithm maintains two archives to save the global
best individuals found so far and the local bests, respectively. The
selection of a global best is based on roulette wheel selection of a
hypercube score [22].

(7) Multi-Objective Evolutionary Algorithm based on Decomposition
(MOEA/D) [23]: MOEA/D was introduced by Zhang et al. in 2007.
It provides a new framework to solve MOPs. MOEA/D handles an
MOP by decomposing it into numerous single objective sub-
problems and optimizes the sub-problems using evolutionary
approach collaboratively and concurrently.

(8) Multi-objective Differential Evolution (MODE) [24]: MODE is like
the basic DE algorithm expect the selection process. Generally,
MODE adopts the non-dominated sorting and ranking selection
methods developed by Deb et al. [18]. The non-dominated sorting
is performed on the combined population of new generated
offspring and parents and the selection is based on the non-
dominated rank and crowding distance. Other techniques like
summation based sorting and diversified selection were also
proposed and used in the literature [25].

3. Classical EED problems

3.1. Problem formulation

The prime target of traditionally electric power systems is to
schedule the outputs of the generators to meet the load requirement
with a minimum fuel cost regardless of emissions produced [1]. With
the increasing requirements for the environmental protection, alter-
native operational strategies are needed to reduce the pollution of the
electric power plants. Environmental/Economic Dispatch (EED) pro-
blems treat the pollution emissions and the fuel cost as two conflicting
objectives which are optimized simultaneously subjected to the prac-
tical constraints. Generally, the problem can be formulated as follows:

Fuel cost objective: The cost curves of the generators can be
represented by quadratic functions and the total fuel cost $/h can be
expressed as:

∑F P a b P c Pmin ( ) = ( + + )
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G
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where ai, bi, ci are the cost coefficients for the ith thermal power
generator. F(PG) is the total fuel cost of the system while NG identifies
the number of thermal units. If the rippling effects produced by the
steam admission valve openings are considered, a sine component
needs to be added to Eq. (2) and expression becomes [12,26]:
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