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Nested sampling (NS) is a highly efficient and easily implemented sampling algorithm that has been suc-
cessfully incorporated into Bayesian inference for model updating and model selection. The key step of
this algorithm lies in proposing a new sample in each step that has a higher likelihood to replace the sam-
ple that has the lowest likelihood evaluated in the previous iteration. This process, also regarded as a con-
strained sampling step, has significant impact on the algorithm efficiency. This paper presents an
evolutionary nested sampling (ENS) algorithm to promote the proposal of effective samples for
Bayesian model updating and model selection by introducing evolutionary operators into standard NS.
Instead of randomly drawing new samples from prior space, ENS algorithm proposes new samples from
previously evaluated samples in light of their likelihood values without any evaluation of gradient. The
main contribution of the presented algorithm is to greatly improve the sampling speed in the constrained
sampling step by use of previous samples. The performances of the proposed ENS algorithm for model
updating and model selection are examined through two numerical examples.

Published by Elsevier Ltd.

1. Introduction

Model updating techniques can be mainly categorized into two
categories: deterministic and probabilistic methods. Deterministic
methods usually cast model updating into an optimization prob-
lem, in which an objective function based on the discrepancy
between model prediction and measured data is defined and min-
imized for improving the model plausibility. Optimization algo-
rithms, including genetic algorithm [1,2], particle swarm
optimization [3], simulated annealing algorithm and their deriva-
tives[4], have been applied to model updating. However, determin-
istic methods can only give one optimal solution, while model
updating, like most ill-posed inverse problems, may have more
than one potential solution due to insufficient observations, con-
taminated data or lack of prior knowledge [5,6].

Bayesian probabilistic inference has been demonstrated to be
relatively promising in handling practical difficulties of model
updating problems [5]. One challenge in implementing Bayesian
probabilistic framework is to evaluate the multidimensional inte-
grals over unknown parameter space, which is analytically intract-
able in general [7]. Thus, stochastic simulation such as importance
sampling [8], Gibbs sampling [9], Markov Chain Monte Carlo
(MCMC) [10] and their derivative algorithms [11-13] are proposed
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to steer away from the computation of complexity integrals. How-
ever, most sampling methods fail to obtain model evidence that is
critical to the evaluation of model plausibility, and are unable to
efficiently propose samples in the high probability of posterior dis-
tribution for high dimensional problems.

Transitional markov chain monte carlo (TMCMC) algorithm pro-
posed by Ching et al. [11] has been proven to outperform other
approaches for its capability of estimating model evidence and
smooth convergence merit. However, it has potential problems in
tackling higher dimension parameters [12], since its intermediate
stage number will augment for the need of more samples while
the accuracy of estimators may decrease with increasing parame-
ter dimension [11]. Hybrid Monte Carlo (HMC) method is capable
of effectively solving higher-dimensional problems by the guid-
ance of gradient of potential energy [12-13]. Nevertheless, numer-
ically estimating the gradient over all unknown parameters for
large complex system is computationally expensive and inaccu-
rate, even infeasible in problems involving a large sample size or
streaming data [14]. Furthermore, the leapfrog algorithm involved
in the evaluation of Hamilton equations does not always conserve
energy in the system with large step size [15], leading to instability
of the simulated Hamilton dynamic system, and thereby causing
the chain of samples to be trapped in some unexpected regions.

In comparison, NS developed by Skilling [16] is a highly efficient
and more convenient sampling algorithm. NS primarily aims to
evaluate Bayesian evidence by converting the high-dimensional
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integral into an easily evaluated one-dimensional integral [15,16].
As a by-product, the final set of samples of NS algorithm can be fur-
ther used to estimate posterior distribution. It has been success-
fully applied to cosmological field [17], finite element model
updating and model selection [18], and surface flow problems
[15,19]. There is still an increasing demand for NS algorithm to
solve statistical inference and Bayesian model selection for its easy
and convenient implementation. The main problem of the standard
NS algorithm lies in the constrained step in which a new sample
with higher likelihood is proposed to replace the sample with the
lowest likelihood. This issue becomes even more challengeable
after several iterations as the likelihood has reached a higher value
and the parameter space shrinks to a very sharp region. To address
this problem, Elsheikh [15] has incorporated the HMC into stan-
dard NS algorithm. However, the estimation of energy gradient
required in HMC method is computationally expensive and inaccu-
rate as aforementioned. Therefore, more efficient and feasible
methods are still needed to be explored for promoting standard
NS algorithm by effectively proposing valid samples.

This paper presents an ENS algorithm for Bayesian model
updating and model selection. ENS is a combination of evolution-
ary algorithm (EA) and standard NS method. Instead of randomly
proposing new samples from prior distribution in the standard
NS, ENS generates new samples from previous samples by evolu-
tionary operations, e.g. selection, crossover and mutation. The
samples evaluated in the former steps are ranked based on their
likelihood values and probably selected to evolve into higher
region of posterior distribution. The advantage of the proposed
ENS algorithm over standard NS is to make full use of previous
samples to draw new samples without any evaluations of gradient.
Furthermore, numerical results show that ENS has the capacity of
dealing with multimodal problems with sufficient initial samples.
The sampling efficiencies of ENS and standard NS are compared.
The performance of the presented ENS algorithm for model updat-
ing and model selection is examined based on two numerical
examples, e.g. a clamped-clamped beam and a truss structure.

2. Theory of finite element model updating

The essence of finite model updating is to determine or calibrate
the unknown structural parameters to make the predictions of a
numerical model match with field measurements as much as pos-
sible. Such parameter calibration process can be realized by mini-
mizing the difference between the field measurement and the
prediction of the theoretical model. In practice, structural modal
characteristics (e.g. modal frequencies and mode shapes) can be
identified from time history responses through stochastic subspace
identification [20], Hilbert-Huang transform [21] and empirical
mode decomposition methods [22]. Let D = {&,$* € R",r =
.,Ng} denote the extracted modal data at the
selected Ny observation DOFs, where @, and q&',‘ are the r-the circular
natural frequency and mode shape, N, is the number of data sets
available, and m refers to the number of observed modes.

Suppose 0 = {0g, 01, 03, ..., 0.} is the unknown parameter vector
characterizing the theoretical model of a real structure, where 7 is
the number of unknown structural parameters. The prediction of
the parameterized model can be obtained from its eigenvalue
equation and denoted as {w;(0), $,(0) € R",r =1,...,m}. The dif-
ference between measured modal data D and model prediction for
the r-the modal frequency and mode shape component can be
respectively defined as [23,24],
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where ||||* means Euclidian norm, and || - H,ZVU =|-1*/No. p=
#*¢,(0)/||4,(0)|1* is a normalized factor that ensures the measured
mode shape ¢ closest to the mode shape ¢, (0). J,,.(0) and ], (0)
in Eq. (1) respectively give the mean errors of the r-th frequency
and mode shape between the measured modal data and model pre-
dictions. Thus the overall error can be obtained from the weighted
combination of the contribution of all m modal frequencies and
mode shapes.
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where w is the weighting factor that reflects the relative importance
of error contributed by mode shapes. Goller and Beck et al. [25]
studied the optimum selection of the weighting factors in model
updating from the view of Bayesian model evidence.

3. Bayesian model updating and model selection

The main idea of applying Bayesian approach to model updating
is to obtain a posterior probability density function (PDF) p(0|D, M;)
of uncertainty parameters 6 for the model class M; based on avail-
able measurement data D. The model class refers to a group of dif-
ferent models resulted from different possible model parameters 6
due to the associated uncertainties. The key step is to establish the
likelihood function that describes the probability of obtaining the
measurement D based on the model defined by 6. The error
between model prediction and measurement D is usually assumed
to be a zero-mean stationary normally-distributed stochastic pro-
cess with a shared standard deviation o. Thus, the likelihood func-
tion can be expressed as the conjunct normal distribution of
multiple independent variables as following:
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The shared standard deviation ¢ is also unknown and needs to
be determined, extending the unknown parameter vector to be x =
{00, 01, 0, ..., 0, c}T = {07, 5}".

Thus, the posterior probability density function (PDF) of the
uncertainty parameters can be obtained as following according to
Bayesian theorem [5],

p(D[x, M;)p(x|M;)
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p(x|D, M;) =

where p(D|x, M;), p(x| M;) and p(D| M;) are likelihood function, prior
PDF and model evidence, respectively.

The model evidence p(D| M;) is the marginal likelihood function
that describes the quality of the model specified by unknown
parameters. It can be determined as below,

p(DIM)) = [ p(D[x,M;) - p(x|M;)dx
_ 1 1(0) )
= (W - exp {‘W}) - p(x|Mj)dx

Commonly, the multidimensional integral (summation for dis-
crete model) over all the space of unknown parameter vector x
in the Eq. (5) cannot be analytically evaluated due to its higher
dimension. Thus, ENS method is elaborated in this paper to esti-
mate the model evidence in Eq. (5) and approximate the posterior
PDF of the uncertainty model parameters in Eq. (4) with the bypro-
duct samples.

Because uncertainties associated with model classes, there may
be many other competitive model classes that could more accu-
rately represent the real system based on measurements. The
Bayesian model selection then can be adopted to determine the
most plausible model by their corresponding model probabilities
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