Future Generation Computer Systems 76 (2017) 1-17

Contents lists available at ScienceDirect 2
FIGICIS!
Future Generation Computer Systems =
journal homepage: www.elsevier.com/locate/fgcs =

A hybrid evolutionary algorithm for task scheduling and data @CmssMark
assignment of data-intensive scientific workflows on clouds

Luan Teylo ¢, Ubiratam de Paula b Yuri Frota?, Daniel de Oliveira®*,

Lacia M.A. Drummond ?

2 Institute of Computing, Fluminense Federal University, Niteroi, Brazil
b UFRR] - Federal Rural University of Rio de Janeiro, Rio de Janeiro, Brazil

HIGHLIGHTS

A new workflow model that considers tasks and data.

The mathematical formulation of Task Scheduling and Data Assignment Problem.
The design of a Hybrid Evolutionary Algorithm (HEA) for scheduling tasks and data.
An extensive experimental evaluation, based on synthetic and real executions.

ARTICLE INFO

ABSTRACT

Article history:

Received 29 April 2016

Received in revised form 25 March 2017
Accepted 10 May 2017

Available online 18 May 2017

Keywords:

Clouds

Combinatorial optimization
Task scheduling

Data assignment

Hybrid evolutionary algorithm

A growing number of data- and compute-intensive experiments have been modeled as scientific work-
flows in the last decade. Meanwhile, clouds have emerged as a prominent environment to execute this
type of workflows. In this scenario, the investigation of workflow scheduling strategies, aiming at reducing
its execution times, became a top priority and a very popular research field. However, few work consider
the problem of data file assignment when solving the task scheduling problem. Usually, a workflow is
represented by a graph where nodes represent tasks and the scheduling problem consists in allocating
tasks to machines to be executed at a predefined time aiming at reducing the makespan of the whole
workflow. In this article, we show that the scheduling of scientific workflows can be improved when
both task scheduling and the data file assignment problems are treated together. Thus, we propose a
new workflow representation, where nodes of the workflow graph represent either tasks or data files,
and define the Task Scheduling and Data Assignment Problem (TaSDAP), considering this new model.
We formulated this problem as an integer programming problem. Moreover, a hybrid evolutionary
algorithm for solving it, named HEA-TaSDAP, is also introduced. To evaluate our approach we conducted
two types of experiments: theoretical and practical ones. At first, we compared HEA-TaSDAP with the
solutions produced by the mathematical formulation and by other works from related literature. Then,
we considered real executions in Amazon EC2 cloud using a real scientific workflow use case (SciPhy
for phylogenetic analyses). In all experiments, HEA-TaSDAP outperformed the other classical approaches
from the related literature, such as Min-Min and HEFT.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The recent advances in computer science have allowed for sev-
eral different fields of science to benefit from computational simu-

to be further processed and analyzed, thus being considered as
data-intensive experiments. This huge volume of data is found
in experiments in many areas, for instance, phylogenetic analy-

lations in their experiments. These called in silico experiments [1,2] SIS [3] computational fluid dynamics [4], astronomy [5], etc.. Thus,
are consuming and producing an unprecedented volume of data scientists perform their analyses using complex computational

* Corresponding author.

E-mail addresses: luanteylo@ic.uff.br (L. Teylo), upaula@ufrrj.br (U. de Paula),
yuri@ic.uff.br (Y. Frota), danielcmo@ic.uff.br (D. de Oliveira), lucia@ic.uff.br

(L.M.A. Drummond).

http://dx.doi.org/10.1016/j.future.2017.05.017
0167-739X/© 2017 Elsevier B.V. All rights reserved.

simulations and increasing volumes of data in their daily duties.
Most of these experiments are represented as a chaining of

scientific programs, where the output of a specific program is the

input of another program. In order to manage the execution of


http://dx.doi.org/10.1016/j.future.2017.05.017
http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
http://crossmark.crossref.org/dialog/?doi=10.1016/j.future.2017.05.017&domain=pdf
mailto:luanteylo@ic.uff.br
mailto:upaula@ufrrj.br
mailto:yuri@ic.uff.br
mailto:danielcmo@ic.uff.br
mailto:lucia@ic.uff.br
http://dx.doi.org/10.1016/j.future.2017.05.017

2 L. Teylo et al. / Future Generation Computer Systems 76 (2017) 1-17

these complex experiments, scientific workflows can be a promi-
nent solution. A scientific workflow is an abstraction that struc-
tures the steps of a scientific experiment as a graph of activities
(i.e. scientific program invocations), in which nodes correspond to
data processing activities and edges represent the dataflow among
them [1]. Moreover, scientific workflows are commonly managed
by complex software named Scientific Workflow Management
Systems (SWfMS) that are used to define, execute, and monitor the
data-intensive experiments. Well-known SWfMS are Swift/T [6],
Pegasus [7], VisTrails [8], Apache Taverna [9] and Kepler [10].

In the same experiment, a scientific workflow is usually re-
executed as many times as needed, varying the input dataset or
the input parameter values to interpret the quality of the result
produced by each execution of the workflow. This situation is
well-known in parallel computing as parameter sweep [11] and
it occurs when the same workflow (and its activities) is executed
using different input data files (or a partition of the input data)
and/or different configurations (different parameter values) until
the exploration finishes (i.e. the analysis of the results is complete).
Thus, since workflow activities commonly process big data, to ex-
plore data parallelism and parameter sweep we consider that each
workflow activity may correspond to several executable tasks.
Each task is considered the smallest unit of processing and may
execute in parallel by consuming a different portion of the input
data. Thus, in the context of this article, a task is the representation
of an atomic execution of an activity, which processes a different
set of parameter values, a data partition or chunk [12]. In addition,
many of the data-intensive workflows are also compute-intensive,
since a single task may execute for several hours or even days.

As the complexity of the scientific workflows grows in terms
of exploration of thousands of huge datasets or several parame-
ters, the performance requirements for such workflows have been
pushing the envelope on the capacity of sequential systems (e.g.
personal computers with a few of processors) for a while already.
If executed sequentially, these data- and compute-intensive work-
flows could execute for several months, which is error-prone and
not desirable due to the competition in science nowadays [13].
Thus, the demand for High Performance Computing (HPC) envi-
ronments allied to parallelism techniques is extreme for these
workflows to produce results in a feasible time for scientists.

Traditional HPC environments such as clusters, supercomputers
and computational grids were used over the last decade to exe-
cute scientific workflows in parallel. However, in the last decade,
Clouds [14] have emerged as a prominent environment to run
data- and compute-intensive workflows [15]. Cloud computing
is a type of Internet-based computing where virtually unlimited
infrastructure, platform, and software are provided on demand and
as services (i.e., [aaS, PaaS and SaasS, respectively). Clouds follow
a pay-per-use model [16,17] where users only pay for resources
they actually used and for the time they used those resources.
Virtual Machines (VMs) and storage areas are types of resources
provided by clouds. Using clouds scientists are not required to
acquire expensive infrastructure (such as a cluster) to execute
their experiments neither spend much effort to configure a new
infrastructure (as in a grid). To enable a data- and compute-
intensive workflow execution in a cloud, the execution of each task
has to be scheduled to a corresponding VM. Then, the scheduling
problem is to decide where to execute all tasks. Scheduling tasks to
distributed computing resources is an NP-complete problem [18],
even when we consider simple scenarios. However, there are some
characteristics of clouds that makes this scheduling process a little
bit more complicated.

First of all, in clouds there are several options of VM types to be
deployed. Each one with different processing and storage capacity,
different bandwidth and financial cost. In addition, some of these
VMs may not suitable for HPC (e.g. the micro and nano VMs in Ama-
zon EC2 cloud). Thus, when we are executing workflows in parallel

in the cloud, the deployed virtual cluster is commonly composed
by heterogeneous VMs and this heterogeneity has to be considered
in the scheduling approach. The second problem is data locality
and transfer. Many of existing workflows consume and produce
many GB or even TB of data and this data (or at least a partition of
this data) has to be eventually transferred from one VM to another
during the workflow execution. These data transfers can produce
a huge (and negative) impact in the workflow execution. Let us
consider the Montage workflow [5] as example. A simple execution
of Montage may produce data files with several GBs. If, during a
workflow execution, this data file is transferred several times from
one VM to another, a considerable portion of the total workflow
execution time will be spent only on data transfer instead of data
processing (which is the focus of the experiment). Thus, when we
are scheduling tasks of a workflow in the cloud we have to try to
avoid unnecessary data transfers, or when the data transfers are
necessary, we have to diminish the impact of data transfer in the
total execution time of the workflow.

To exemplify this issue, let us consider the case where we have
two tasks: task;, which is a short term task (i.e. it is not compute-
intensive) and task,, which is a long term task (i.e. it is a compute-
intensive task and requires high processing capacity to finish in
a feasible time) in a workflow. In this example, task, consumes
the data produced by task; (i.e. there is a data dependency). Let us
also consider that task; was executed in a medium Vm1 of Amazon
EC2 cloud and produces a data file with several GBs. To avoid data
transfers, we face 2 possible scenarios: (i) to schedule task, to Vm2
(or Vm3) that have more processing capacity (such as a 2XLarge VM
in Amazon EC2 cloud), which will result in a costly data transfer
from Vm1 to Vm2 (or Vm3) and (ii) to execute task, in Vm1 where
task; was executed. The first scenario will imply into a costly data
transfer, but then we can assume that task, will properly execute in
a feasible time. The second scenario does not imply data transfers,
but Vm1 may be not suitable to execute task-, so the time needed
to process task, in Vm1 can be huge. The scheduling approach
has then to analyze the trade-off between transferring data and
executing task, in Vm2 (or Vm3); or avoiding data transfer and
executing task, in Vm1. In addition, when a data transfer is needed
and defined by the scheduling approach, it can be performed by
the SWIMS as a independent task of the workflow and executed
before the task that will consume the data. This way, when the
scheduled time to execute the task comes, all data will be already
placed in the correct VM. Thus, it is clear that data distribution
and task distribution are not independent problems and have to
be analyzed together by the scheduling approach.

Finally, besides the impact of transfer data, we have also to
consider a set of data constraints. These constraints usually define
that some data cannot (or it is not recommended to) be moved (we
call this as static data files), because it is either too big or for pro-
prietary reasons (e.g. the Brazilian Internet law defines that all data
produced by Brazilian federal universities and research centers
should be stored in data-centers located in Brazil. All data cannot
be moved or copied beyond the Brazilian frontier — actually this
restriction motivated Amazon to create a data-center in the city
of Sdo Paulo). For example, if scientists are running phylogenetic
analysis workflows [3] they commonly access the RefSeq database
(www.ncbi.nlm.nih.gov/refseq/). This database is a static dataset,
since it is unfeasible to transfer the entire dataset to the cloud (due
to the huge volume of data). Thus, this requires that the scheduling
approach “fixes” some tasks to specific VMs that execute as “near”
as possible of static data files. Although these constraints “fix”
some tasks to specific resources, they do not reduce the complexity
of the workflow scheduling.

The aforementioned scenario leads to the development of
several solutions for the workflow task scheduling problem in
clouds [12,19-24]. However, these solutions do not consider data


http://www.ncbi.nlm.nih.gov/refseq/

ISIf)rticles el Y 20 6La5 s 3l OISl ¥
Olpl (pawasd DYl gz 5o Ve 00 Az 5 ddes 36kl Ol ¥/
auass daz 3 Gl Gy V

Wi Ol3a 9 £aoge o I rals 9oy T 55 g OISl V/

s ,a Jol domieo ¥ O, 55l 0lsel v/

ol guae sla oLl Al b ,mml csls p oKl V7

N s ls 5l e i (560 sglils V7

Sl 5,:K8) Kiadigh o Sl (5300 0,00 b 25 ol Sleiiy ¥/


https://isiarticles.com/article/150229

