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Abstract

To an increasing extent since the late 1980s, software learning methods including neural networks (NN) and case based reasoning (CBR)

have been used for prediction in financial markets and other areas. In the past, the prediction of foreign exchange rates has focused on isolated

techniques, as exemplified by the use of time series models including regression models or smoothing methods to identify cycles and trends.

At best, however, the use of isolated methods can only represent fragmented models of the causative agents, which underlie business cycles.

Experience with artificial intelligence applications since the early 1980s points toward a multistrategy approach to discovery and prediction.

This paper investigates the impact of momentum bias on forecasting financial markets through knowledge discovery techniques. Different

modes of bias are used as input into learning systems using implicit knowledge representation (NNs) and CBR. The concepts are examined in

the context of predicting movements in the Japanese yen.
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1. Introduction

In the past, the prediction of foreign exchange rates has

focused primarily on isolated techniques, as exemplified by

the use of time series models including regression models or

smoothing methods to identify cycles and trends. At best,

however, the use of isolated methods can only represent

fragmented models of the causative agents, which underlie

business cycles. Experience with artificial intelligence

applications since the early 1980s points toward a multi-

strategy approach to discovery and prediction. In particular,

statistical methods such as factor analysis may be used for

exploratory analysis to determine the most salient charac-

teristics behind foreign exchange rate behavior. The results

of such analysis may be used as input into a learning system

using implicit knowledge representation (neural networks,

NN) and case based reasoning (CBR).

The rest of this paper is organized into five sections.

Section 2 describes research background. In Section 2, the

review of chaotic analysis and knowledge discovery

techniques is presented. In Section 3, we present the case

study. The case study intends to investigate the effect of bias

on the predictive performance of learning methods in

forecasting a foreign exchange rate. Section 4 reports

the results of the case study. Finally, the concluding remarks

are presented in Section 5.

2. Research background

Increasing evidence over the past decade indicates that

financial markets exhibit chaotic behavior. The level of

chaos in a data stream can be characterized by a number of

methods. Two of the most popular parameters are the

correlation dimension and the Lyapunov exponent.

2.1. Lyapunov characteristic exponents and correlation

dimension estimates

The Lyapunov exponent characterizes the dynamics of a

complex process. Each dimension of the process is

associated with a Lyapunov exponent. A positive exponent

indicates the sensitivity of initial conditions; that is, how

much a forecast diverges based on approximately similar

starting conditions. From a slightly different perspective, a

Lyapunov exponent indicates the loss of predictive ability as

one looks forward in time. On the other hand, a negative

exponent indicates the degree to which points converge

toward one another. For instance, a point attractor is

characterized by negative values for each exponent (Ott,
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Sauer, & Yorke, 1994; Pesaran & Potter, 1993; Peters,

1991).

The correlation dimension is an estimate of the fractal

dimension. A chaotic system can be modeled by a number

of coupled non-linear first-order differential equations. The

minimum number of differential equations is equal to the

integer that embeds the fractal dimension. The dimension of

the phase space that spans the minimal number of

differential equations is called the embedding dimension

(Embrechts, 1994).

In addition, the level of chaos in a time series data can be

characterized by a number of methods. One of the methods

widely used by the physicists to test for chaos in time series

data is the estimation of correlation dimension (Cecen and

Erkal, 1996). The correlation dimension is an estimate of the

fractal dimension and is used to differentiate between

deterministic chaos and stochastic systems. It measures the

correlation integral Cð1Þ; the probability that two point

chosen at random will be within a certain distance of each

other, and tests how the probability changes as the distance

is increased (Peters, 1991).

For a given time series {Yt : t ¼ 1;…;T} of D-dimen-

sional vectors, the correlation integral is formally defined as

Cð1Þ ¼ lim
T!1

2

TðT 2 1Þ

X

iaj

I1ðYi;YjÞ

where I1ðx; yÞ is an indicator function which is equal to one if

kx 2 yk a 1; and zero otherwise; where kx 2 yk is the norm as

measured by the Euclidean distance (Wasserman, 1989).

Grassberger and Procaccia (1983) defined the correlation

dimension of the time series {Yt} as follows

Dm ¼ lim
1!0

½log Cmð1; TÞ=log 1�

where m is embedding dimension.

The Hurst exponent H is a measure of the bias in random

motion. For Brownian motion, the value of H is 0.50. For a

persistent, or trend-reinforcing series, 0.50 , H # 1.00. On

the other hand, 0 # H , 0.50 for an antipersistent, or mean-

reverting system.

The calculation of the Hurst exponent involves a

preliminary step known as rescaled ðR=SÞ range analysis.

The analysis developed to determine long-memory effects

and fractional Brownian motion. R=S analysis measures how

the distance covered by a particle increases as we look at

longer and longer time scales (Peters, 1996).

2.2. Data mining and knowledge discovery techniques

Principal components analysis. The goal of principal

components analysis is to take p variables X1;X2;…;Xp and

find combinations of these to produce indices Z1;Z2;…;Zp

which are uncorrelated. The indices correspond to an

orthogonal set of vectors, which simplifies the represen-

tation and interpretation of observations. Moreover, the

indices are ordered so that Z1 exhibits the greatest amount of

variation, Z2 displays the second largest amount of

variation, and so on. The Zi are called the principal

components (Dunteman, 1989).

In many cases, the first several principal components

collectively account for the bulk of the variation. In that

case, the leading indices may be regarded as a sparse set of

variables, which largely model the underlying situation; the

remaining variables may be viewed as secondary and often

ignored without much loss of modeling accuracy.

Factor analysis. In a way, factor analysis has similar

aims to principal components analysis. The goal is still to

describe a set of p variables X1;X2;…;Xp in terms of an

orthogonal set of indices or factors. However, factor

analysis has one further ambition: each factor should ideally

represent an underlying dimension with physical relevance

to an application, rather than just an arbitrary amalgamation

of variables as in principal components analysis.

Backpropagation neural network. The NN methodology

has been applied extensively to solve practical problems

following the publication of the backpropagation algorithm

for the multilayer perceptron (Rumelhart, Hinton, &

Williams, 1986). The algorithm was developed for the

perceptron model, a simple structure to simulate a neuron

(Rosenblatt, 1962). Today the backpropagation network

(BPN) is the most widely used neural algorithm in science,

engineering, finance and other fields.

The general structure of a multilayer perceptron plus the

backpropagation algorithm is shown in Fig. 1. The data

entering an input node is multiplied by a set of weights. All

such weighted inputs are summed at each node of next layer.

The summed value enters an activation function, which

depends on the learning algorithm. The output of the

activation function then becomes the raw input for a node in

next layer. This process is called feed-forward.

The output of nodes in the last layer may differ from the

target value because the weights are initialized randomly.

The error between the target value and the calculated value

can be adjusted by varying the weights. The weights are

adjusted by a delta rule derived from a cost function, which

Fig. 1. General structure of the multilayer perceptron using the back-

propagation algorithm.
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