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Abstract

We give here a simplified presentation of the lowest order Serendipity Virtual Element method, and show its use for
the numerical solution of linear magneto-static problems in three dimensions. The method can be applied to very general
decompositions of the computational domain (as is natural for Virtual Element Methods) and uses as unknowns the (constant)
tangential component of the magnetic field H on each edge, and the vertex values of the Lagrange multiplier p (used to enforce the
solenoidality of the magnetic induction B = µH). In this respect the method can be seen as the natural generalization of the lowest
order Edge Finite Element Method (the so-called “first kind Nédélec” elements) to polyhedra of almost arbitrary shape, and as we
show on some numerical examples it exhibits very good accuracy (for being a lowest order element) and excellent robustness with
respect to distortions.
c⃝ 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http:

//creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

In this paper we introduce a simplified version of the Serendipity Virtual Element Methods (VEMs) presented
in [1] and [2] and we show how they can be used for the numerical solution of linear magneto-static problems in the
so-called Kikuchi formulation (see e.g. [3]).

Serendipity VEMs are a recent variant of Virtual Element Methods that allow (as is the case of classical Serendipity
Finite Elements (FEMs) on quadrilaterals and hexahedra) to eliminate a certain number of degrees of freedom (internal
to faces and volumes) without compromising the order of accuracy. In the Virtual Element framework they are
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particularly useful since the original formulations of VEMs (as in [4] or [5]) often use more degrees of freedom
than their FEM counterpart (when it exists).

The advantage of VEMs, when it comes to Serendipity variants, is that, contrary to FEMs, they do not use a
reference element: an inevitable sacrifice, if you want to be able to deal with very general geometries. Such a sacrifice,
that requires additional computations on the current element, has however the advantage of being much more robust
with respect to distortions, whereas Serendipity FEMs can lose orders of accuracy already on innocent quadrilaterals
that are not parallelograms (as is well known, and has been analyzed e.g. in [6,7]).

Here, as we said, we present a variant of the general theories of [1] and [2], that is specially designed for lowest
order cases and comes out to be simpler, both for the theoretical presentation and the practical implementation.

Then we apply it to the classical model magnetostatic problem, in a smooth-enough simply connected bounded
domain Ω in R3:⎧⎪⎪⎪⎨⎪⎪⎪⎩

given j ∈ H (div;Ω ) (with divj = 0 in Ω ), and µ = µ(x) ≥ µ0 > 0,

find H ∈ H (curl;Ω ) and B ∈ H (div;Ω ) such that:
curlH = j and divB = 0, with B = µH in Ω

with the boundary conditions H ∧ n = 0 on ∂Ω .

(1.1)

In particular we shall deal with the variational formulation introduced in [3], that reads⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
find H ∈ H0(curl;Ω ) and p ∈ H 1

0 (Ω ) such that:∫
Ω

curlH · curlv dΩ +

∫
Ω

∇ p · µv dΩ =

∫
Ω

j · curlv dΩ ∀v ∈ H0(curl;Ω )∫
Ω

∇q · µH dΩ = 0 ∀q ∈ H 1
0 (Ω ).

(1.2)

For many other different approaches to the same problem see e.g. [8–10] and the references therein.
In our discretization, the scalar variable p (Lagrange multiplier for the condition div(µH) = 0) will be discretized

using only vertex values as degrees of freedom, and the magnetic field H will be discretized using only one degree of
freedom (= constant tangential component) per edge. In its turn the current j (here a given quantity) will be discretized
by its lowest order Face Virtual Element interpolant jI , individuated by its constant normal component on each face.

On tetrahedrons this would correspond to use a piecewise linear scalar for p, a lowest-order Nédélec of the first
kind for H, and a lowest order Raviart–Thomas for j: in a sense, nothing new. But already on prisms, pyramids, or
hexahedra we start gaining, as we can allow more general geometries and more dramatic distortions, and there are no
difficulties in using much more general polyhedrons.

On polyhedrons the present approach could also be seen as being close to previous works on Mimetic Finite
Differences (the ancestor of Virtual Elements) like [11] or [12]. Here however the approach is more simple and direct,
allowing a thorough analysis of convergence properties. Also the use of an explicit stabilizing term, reminiscent of
Hybrid Discontinuous Galerkin methods (see e.g. [13] and the references therein) contributes, in our opinion, to the
user-friendliness of the presentation.

A layout of the paper is as follows. The next section will be dedicated to recall the basic notation of functional
spaces and differential operators.

Then in Section 3 we will introduce and discuss the two-dimensional VEMs (nodal and edge) that will be used
on the faces of the three-dimensional decompositions. As usual, we will present first the spaces on a single two
dimensional element (local spaces).

In Section 4 we will finally present our “Simplified Serendipity Spaces” in three dimensions. We first deal with a
single element (polyhedron) and then discuss the spaces on a general decomposition.

In Section 5 we will use these spaces to discretize the linear magneto-static problem, and briefly discuss their
convergence and the a-priori error analysis.

Finally, in Section 6 we will present some numerical results.

2. Notation

In any dimension, for an integer s ≥ −1 we will denote by Ps the space of polynomials of degree ≤ s. Following
a common convention, P−1 ≡ {0} and P0 ≡ R. Moreover, Πs,O will denote the L2(O)-orthogonal projection onto Ps
(or (Ps)2, or (Ps)3). When no confusion can occur, this will be simply denoted by Πs .
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