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a b s t r a c t 

Network virtualization enables the share of a physical network among multiple virtual networks. Virtual 

network embedding determines the effectiveness of utilization of network resources. Traditional heuristic 

mapping algorithms follow static procedures, thus cannot be optimized automatically, leading to sub- 

optimal ranking and embedding decisions. To solve this problem, we introduce a reinforcement learning 

method to virtual network embedding. In this paper, we design and implement a policy network based on 

reinforcement learning to make node mapping decisions. We use policy gradient to achieve optimization 

automatically by training the policy network with the historical data based on virtual network requests. 

To the best of our knowledge, this work is the first to utilize historical requests data to optimize network 

embedding automatically. The performance of the proposed embedding algorithm is evaluated in com- 

parison with two other algorithms which use artificial rules based on node ranking. Simulation results 

show that our reinforcement learning is able to learn from historical requests and outperforms the other 

two embedding algorithms. 

© 2018 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license. 
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1. Introduction 

The combination of network virtualization and software defined 

networks is considered as the foundation towards the next gener- 

ation of Internet architecture [1,2] . Network virtualization enables 

the coexistence of multiple heterogeneous virtual networks on a 

shared network [3–6] . For Internet Service Providers (ISPs), it en- 

ables new business models of hosting multiple concurrent network 

services on their infrastructures. Decisions for embedding are chal- 

lenging problems for ISPs since it determines the effectiveness of 

utilization of network resources. A sub-optimal embedding algo- 

rithm will decrease the overall capacity of the infrastructure and 

lead to cost of revenue for ISPs. A virtual network consists of sev- 

eral virtual nodes (e.g. virtual routers), connected by a set of vir- 

tual links. The purpose of virtual network embedding is to map 

virtual networks to a shared physical network while providing the 

requests with adequate computing and bandwidth resources. 

However, the virtual network embedding problem has been 

proved to be NP-hard [7] . As a result, a large number of heuris- 
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tic algorithms have been proposed [8–11] , but most of them rely 

on artificial rules to rank nodes or make mapping decisions. The 

parameters in these algorithms are always fixed and cannot be op- 

timized, making the embedding decisions sub-optimally. On the 

other hand, in prior works, the information about substrate net- 

work and the knowledge about virtual network embedding hidden 

in historical network request data have always been overlooked. 

Historical network requests are a good representation of temporal 

distribution and resource demands in the future. 

In recent years, big data, machine learning and artificial intel- 

ligence have exciting breakthroughs achieving state of the art re- 

sults such as natural language understanding and object detection. 

Machine learning algorithms process a large amount of data col- 

lected during a period and automatically learn the statistical in- 

formation from the data to give classification or prediction. Rein- 

forcement learning, as a widely-used technique in machine learn- 

ing, has shown a great potential in dealing with complex tasks, e.g., 

game of go [12] , or complicated control tasks such as auto-driving 

and video games [13] . The goal of a reinforcement learning system 

(or an agent) is to learn better policies for sequential decision mak- 

ing problems with an optimal cumulative future reward signal [14] . 
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In this paper, we introduce reinforcement learning into the 

problem of virtual network embedding to optimize the node map- 

ping process. Similar to earlier works [8,9] , our work is based on 

the assumption that all network requests follow an invariable dis- 

tribution. We divide our network request data into a training set 

and a testing set, to train our reinforcement learning agent (RLA) 

and evaluate its performance respectively. We devise an artificial 

neural network called policy network as the RLA, which observes 

the status of substrate network and outputs node mapping results. 

We train the policy network with historical network request data 

using policy gradient through back propagation. An exploration 

strategy is applied in the training stage to find better solutions, and 

a greedy strategy is applied in evaluation to fully evaluate the ef- 

fectiveness of the RLA. Extensive simulations show that the RLA is 

able to extract knowledge from historical data and generalize it to 

incoming requests. To the best of our knowledge, this work is the 

first to utilize historical network requests data and policy network 

based reinforcement learning to optimize virtual network embed- 

ding automatically. The RLA outperforms two representative em- 

bedding algorithms based on node ranking in terms of long-term 

average revenue and acceptance ratio, while making a better uti- 

lization of network resources. 

The rest of this paper is organized as follows. Section 2 as- 

sesses a number of related works. Section 3 introduces the virtual 

network embedding problem and the proposed network model. 

Section 4 presents the design and implementation of the reinforce- 

ment learning agent together with its training and testing process. 

Section 5 evaluates the performance of the RLA, and Section 6 con- 

cludes the paper. 

2. Related work 

Virtual network embedding involves two stages—node mapping 

and link mapping. Some works, e.g., [10,11] , solve the problem us- 

ing a one-stage approach and assign virtual nodes and links co- 

ordinately using linear programming or mixed integer program- 

ming (MIP). For example, a rounding-based approach is applied in 

R-ViNE and D-ViNE algorithms [10] to achieve a linear program- 

ming relaxation of the MIP. However, these methods demand cer- 

tain additional constraints such as location requirements to extend 

the network topology to an augmented graph so that the comput- 

ing space can be greatly reduced. In other works [8,9,15] , node 

mapping and link mapping are solved independently. First, the 

substrate nodes are ranked based on their availability measured 

with certain rules. Then, a greedy node mapping strategy is applied 

where the priority of mapping is decided by rank results. Substrate 

nodes with more available resources will be considered first in the 

node mapping stage. Finally, the virtual links are mapped to the 

shortest path that has enough bandwidth resources between fixed 

nodes. Yu et al. [8] focus on path splitting and migration in link 

mapping problem, which means a virtual link may be mapped to 

several substrate links and existing link mapping may change ac- 

cording to the condition of substrate network. However, those ap- 

proaches require the support of the substrate network and might 

not be available. Inspired by PageRank [16] that ranks the relative 

importance of Web pages, the authors of [9] proposed an algorithm 

based on Markov random walk to solve the problem of node rank- 

ing and mapping. The availability of each substrate node as well 

as its neighbors is considered in node ranking. However, the node 

ranking methods mentioned above follow invariable procedures. 

Thus no automatic optimization can be performed, which leads to 

sub-optimal ranking and embedding results. Furthermore, the up- 

dating process of node ranking takes a rather long time to run 

and may not converge. The aforementioned virtual network em- 

bedding algorithms are carried out in a centralized manner, which 

means that a centralized controller is responsible for gathering 

Table 1 

Frequently used notations. 

G S Substrate network 

N S Nodes of substrate network 

L S Links of substrate network 

A S N Node attribute of substrate network 

A S L Link attribute of substrate network 

G V Virtual network of a certain virtual request 

N V Nodes of a virtual network 

L V Links of a virtual network 

A V N Constraints of substrate nodes 

A V L Constraints of substrate nodes 

information about substrate network and making mapping deci- 

sions. In [17] , a multi-agent based approach and a distributed 

protocol are proposed to ensure distributed negotiation and syn- 

chronization between substrate nodes. In addition, many works 

[18,19] also consider the energy efficiency of VNE. 

Haeri and Trajkovic [20] combined reinforcement learning and 

virtual network embedding. But different from our work, they em- 

ploy the Markov decision process to solve the node mapping prob- 

lem and use Monte-Carlo tree search (MCTS) as action policies. 

As a result, the MCTS has to be applied every time when a vir- 

tual request arrives, which requires a great amount of comput- 

ing power and makes it less time-efficient. The works presented 

in [21,22] also employ reinforcement learning. However, they fo- 

cus on the dynamic resource management among virtual networks. 

Mijumbi et al. [21] applied a q-learning based reinforcement learn- 

ing agent to build a decentralized resource management system, 

which takes the role to increase or decrease the resources allo- 

cated to a certain virtual network. Mijumbi et al. [23] employed 

an artificial network to make resources reallocation decisions and 

train the network with a q-table from reference [21] . In [22] , a re- 

inforcement learning based neuro-fuzzy algorithm is proposed. The 

aforementioned works apply machine learning and reinforcement 

learning approaches to achieving dynamic resource management 

among virtual networks which are already embedded in the sub- 

strate network. Our work differs from these works in two ways. 

One is that we utilize a policy network based reinforcement learn- 

ing method and apply policy gradient to train the policy network. 

Another is that we aim to improve the efficiency of the virtual net- 

work embedding process instead of dynamic resource management 

among virtual networks after embedding. 

3. Network modeling 

In this section, we present a network model and formulate the 

virtual network embedding problem with description of its com- 

ponents. The notations used in this section are shown in Table 1 . 

Fig. 1 shows the mapping process of two different virtual net- 

work requests. A substrate network is represented as an undi- 

rected graph G 

S = (N 

S , L S , A 

S 
N 
, A 

S 
L 
) , where N 

S denotes the set of all 

the substrate nodes, L S denotes the set of all the substrate links, 

A 

S 
N 

and A 

S 
L 

stand for the attributes of substrate nodes and links 

respectively. In consistency with earlier works [8,9] , in this pa- 

per we consider computing capability as node attribute and band- 

width capacity as link attribute. Let P S denote the set of all the 

loop-free paths in substrate network. Fig. 1 (c) shows an example 

of a substrate network, where a circle denotes a substrate node, 

and a line connecting two circles denotes a substrate link. The 

number in a square box denotes the CPU (computing) capacity of 

that node, and the number next to a substrate link denotes the 

bandwidth of that link. Similarly, we also use an undirected graph 

G 

V = (N 

V , L V , C V 
N 
, C V 

L 
) to describe a virtual network request, where 

N 

V denotes the set of all the virtual nodes in the request, L V de- 

notes the set of all the virtual links in the request, C V 
N 

and C V 
L 

stand 
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