
Neurocomputing 284 (2018) 1–9

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

A novel reinforcement learning algorithm for virtual network

emb e dding

Haipeng Yao

a , ∗, Xu Chen

a , Maozhen Li b , Peiying Zhang

a , Luyao Wang

c

a State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecom, Beijing, P.R. China
b Department of Electronic and Computer Engineering, Brunel University London, Uxbridge UB8 3PH, UK
c Beijing Advanced Innovation Center for Future Internet Technology, Beijing University of Technology, Beijing, P.R. China

a r t i c l e i n f o

Article history:

Received 1 November 2017

Revised 6 December 2017

Accepted 6 January 2018

Communicated by Dr. Ma Lifeng Ma

Keywords:

Virtual network embedding

Reinforcement learning

Policy network

Policy gradient

a b s t r a c t

Network virtualization enables the share of a physical network among multiple virtual networks. Virtual

network embedding determines the effectiveness of utilization of network resources. Traditional heuristic

mapping algorithms follow static procedures, thus cannot be optimized automatically, leading to sub-

optimal ranking and embedding decisions. To solve this problem, we introduce a reinforcement learning

method to virtual network embedding. In this paper, we design and implement a policy network based on

reinforcement learning to make node mapping decisions. We use policy gradient to achieve optimization

automatically by training the policy network with the historical data based on virtual network requests.

To the best of our knowledge, this work is the first to utilize historical requests data to optimize network

embedding automatically. The performance of the proposed embedding algorithm is evaluated in com-

parison with two other algorithms which use artificial rules based on node ranking. Simulation results

show that our reinforcement learning is able to learn from historical requests and outperforms the other

two embedding algorithms.

© 2018 The Author(s). Published by Elsevier B.V.

This is an open access article under the CC BY-NC-ND license.

(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

The combination of network virtualization and software defined

networks is considered as the foundation towards the next gener-

ation of Internet architecture [1,2] . Network virtualization enables

the coexistence of multiple heterogeneous virtual networks on a

shared network [3–6] . For Internet Service Providers (ISPs), it en-

ables new business models of hosting multiple concurrent network

services on their infrastructures. Decisions for embedding are chal-

lenging problems for ISPs since it determines the effectiveness of

utilization of network resources. A sub-optimal embedding algo-

rithm will decrease the overall capacity of the infrastructure and

lead to cost of revenue for ISPs. A virtual network consists of sev-

eral virtual nodes (e.g. virtual routers), connected by a set of vir-

tual links. The purpose of virtual network embedding is to map

virtual networks to a shared physical network while providing the

requests with adequate computing and bandwidth resources.

However, the virtual network embedding problem has been

proved to be NP-hard [7] . As a result, a large number of heuris-

∗ Corresponding author.

E-mail address: yaohaipeng@bupt.edu.cn (H. Yao).

tic algorithms have been proposed [8–11] , but most of them rely

on artificial rules to rank nodes or make mapping decisions. The

parameters in these algorithms are always fixed and cannot be op-

timized, making the embedding decisions sub-optimally. On the

other hand, in prior works, the information about substrate net-

work and the knowledge about virtual network embedding hidden

in historical network request data have always been overlooked.

Historical network requests are a good representation of temporal

distribution and resource demands in the future.

In recent years, big data, machine learning and artificial intel-

ligence have exciting breakthroughs achieving state of the art re-

sults such as natural language understanding and object detection.

Machine learning algorithms process a large amount of data col-

lected during a period and automatically learn the statistical in-

formation from the data to give classification or prediction. Rein-

forcement learning, as a widely-used technique in machine learn-

ing, has shown a great potential in dealing with complex tasks, e.g.,

game of go [12] , or complicated control tasks such as auto-driving

and video games [13] . The goal of a reinforcement learning system

(or an agent) is to learn better policies for sequential decision mak-

ing problems with an optimal cumulative future reward signal [14] .

https://doi.org/10.1016/j.neucom.2018.01.025

0925-2312/© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license.

(http://creativecommons.org/licenses/by-nc-nd/4.0/)

https://doi.org/10.1016/j.neucom.2018.01.025
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2018.01.025&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:yaohaipeng@bupt.edu.cn
https://doi.org/10.1016/j.neucom.2018.01.025
http://creativecommons.org/licenses/by-nc-nd/4.0/

2 H. Yao et al. / Neurocomputing 284 (2018) 1–9

In this paper, we introduce reinforcement learning into the

problem of virtual network embedding to optimize the node map-

ping process. Similar to earlier works [8,9] , our work is based on

the assumption that all network requests follow an invariable dis-

tribution. We divide our network request data into a training set

and a testing set, to train our reinforcement learning agent (RLA)

and evaluate its performance respectively. We devise an artificial

neural network called policy network as the RLA, which observes

the status of substrate network and outputs node mapping results.

We train the policy network with historical network request data

using policy gradient through back propagation. An exploration

strategy is applied in the training stage to find better solutions, and

a greedy strategy is applied in evaluation to fully evaluate the ef-

fectiveness of the RLA. Extensive simulations show that the RLA is

able to extract knowledge from historical data and generalize it to

incoming requests. To the best of our knowledge, this work is the

first to utilize historical network requests data and policy network

based reinforcement learning to optimize virtual network embed-

ding automatically. The RLA outperforms two representative em-

bedding algorithms based on node ranking in terms of long-term

average revenue and acceptance ratio, while making a better uti-

lization of network resources.

The rest of this paper is organized as follows. Section 2 as-

sesses a number of related works. Section 3 introduces the virtual

network embedding problem and the proposed network model.

Section 4 presents the design and implementation of the reinforce-

ment learning agent together with its training and testing process.

Section 5 evaluates the performance of the RLA, and Section 6 con-

cludes the paper.

2. Related work

Virtual network embedding involves two stages—node mapping

and link mapping. Some works, e.g., [10,11] , solve the problem us-

ing a one-stage approach and assign virtual nodes and links co-

ordinately using linear programming or mixed integer program-

ming (MIP). For example, a rounding-based approach is applied in

R-ViNE and D-ViNE algorithms [10] to achieve a linear program-

ming relaxation of the MIP. However, these methods demand cer-

tain additional constraints such as location requirements to extend

the network topology to an augmented graph so that the comput-

ing space can be greatly reduced. In other works [8,9,15] , node

mapping and link mapping are solved independently. First, the

substrate nodes are ranked based on their availability measured

with certain rules. Then, a greedy node mapping strategy is applied

where the priority of mapping is decided by rank results. Substrate

nodes with more available resources will be considered first in the

node mapping stage. Finally, the virtual links are mapped to the

shortest path that has enough bandwidth resources between fixed

nodes. Yu et al. [8] focus on path splitting and migration in link

mapping problem, which means a virtual link may be mapped to

several substrate links and existing link mapping may change ac-

cording to the condition of substrate network. However, those ap-

proaches require the support of the substrate network and might

not be available. Inspired by PageRank [16] that ranks the relative

importance of Web pages, the authors of [9] proposed an algorithm

based on Markov random walk to solve the problem of node rank-

ing and mapping. The availability of each substrate node as well

as its neighbors is considered in node ranking. However, the node

ranking methods mentioned above follow invariable procedures.

Thus no automatic optimization can be performed, which leads to

sub-optimal ranking and embedding results. Furthermore, the up-

dating process of node ranking takes a rather long time to run

and may not converge. The aforementioned virtual network em-

bedding algorithms are carried out in a centralized manner, which

means that a centralized controller is responsible for gathering

Table 1

Frequently used notations.

G S Substrate network

N S Nodes of substrate network

L S Links of substrate network

A S N Node attribute of substrate network

A S L Link attribute of substrate network

G V Virtual network of a certain virtual request

N V Nodes of a virtual network

L V Links of a virtual network

A V N Constraints of substrate nodes

A V L Constraints of substrate nodes

information about substrate network and making mapping deci-

sions. In [17] , a multi-agent based approach and a distributed

protocol are proposed to ensure distributed negotiation and syn-

chronization between substrate nodes. In addition, many works

[18,19] also consider the energy efficiency of VNE.

Haeri and Trajkovic [20] combined reinforcement learning and

virtual network embedding. But different from our work, they em-

ploy the Markov decision process to solve the node mapping prob-

lem and use Monte-Carlo tree search (MCTS) as action policies.

As a result, the MCTS has to be applied every time when a vir-

tual request arrives, which requires a great amount of comput-

ing power and makes it less time-efficient. The works presented

in [21,22] also employ reinforcement learning. However, they fo-

cus on the dynamic resource management among virtual networks.

Mijumbi et al. [21] applied a q-learning based reinforcement learn-

ing agent to build a decentralized resource management system,

which takes the role to increase or decrease the resources allo-

cated to a certain virtual network. Mijumbi et al. [23] employed

an artificial network to make resources reallocation decisions and

train the network with a q-table from reference [21] . In [22] , a re-

inforcement learning based neuro-fuzzy algorithm is proposed. The

aforementioned works apply machine learning and reinforcement

learning approaches to achieving dynamic resource management

among virtual networks which are already embedded in the sub-

strate network. Our work differs from these works in two ways.

One is that we utilize a policy network based reinforcement learn-

ing method and apply policy gradient to train the policy network.

Another is that we aim to improve the efficiency of the virtual net-

work embedding process instead of dynamic resource management

among virtual networks after embedding.

3. Network modeling

In this section, we present a network model and formulate the

virtual network embedding problem with description of its com-

ponents. The notations used in this section are shown in Table 1 .

Fig. 1 shows the mapping process of two different virtual net-

work requests. A substrate network is represented as an undi-

rected graph G

S = (N

S , L S , A

S
N
, A

S
L
) , where N

S denotes the set of all

the substrate nodes, L S denotes the set of all the substrate links,

A

S
N

and A

S
L

stand for the attributes of substrate nodes and links

respectively. In consistency with earlier works [8,9] , in this pa-

per we consider computing capability as node attribute and band-

width capacity as link attribute. Let P S denote the set of all the

loop-free paths in substrate network. Fig. 1 (c) shows an example

of a substrate network, where a circle denotes a substrate node,

and a line connecting two circles denotes a substrate link. The

number in a square box denotes the CPU (computing) capacity of

that node, and the number next to a substrate link denotes the

bandwidth of that link. Similarly, we also use an undirected graph

G

V = (N

V , L V , C V
N
, C V

L
) to describe a virtual network request, where

N

V denotes the set of all the virtual nodes in the request, L V de-

notes the set of all the virtual links in the request, C V
N

and C V
L

stand

https://isiarticles.com/article/150260

