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a b s t r a c t

In this paper, we consider an in-network optimal resource allocation problem with multiple demand
equations. We propose a novel distributed continuous-time algorithm that solves the problem over
strongly connected and weight-balanced digraph network topologies when the local cost functions are
strongly convex. We also discuss the extension of our convergence guarantees to dynamically changing
topologies. Finally, we show that if the network is an undirected connected graph, we can guarantee sta-
bility and convergence of our algorithm for problems involving local convex functions. This convergence
guarantee is to a point in the set ofminimizers of our optimal resource allocation problem. The design and
analysis of our algorithm are carried out using a control theoretic approach. We demonstrate our results
through a numerical example.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

This paper considers the problem of designing a distributed
algorithm for an optimal resource allocation problem subject to a
set of affine equality constraints over a network of N agents with
communication and processing capabilities. In particular, each
agent i ∈ {1, . . . ,N} has a convex and differentiable local cost
function f i : R → R. These agents are meeting some demands
bj ∈ R, j ∈ {1, . . . , p}, through weighted contributions, in a way
that the total cost f (x) = ΣN

i=1f
i(xi) is at its minimum. In other

words, each agent i ∈ {1, . . . ,N} seeks x⋆i , the ith element of x⋆

given by

x⋆ = arg min
x∈RN

N∑
i=1

f i(xi), subject to (1a)

ω1
j x

1
+ · · · + ωN

j x
N

− bj = 0, j∈ {1, . . . , p}, (1b)

where, ωi
j ∈ R, i ∈ {1, . . . ,N}, is the weight on the contribution of

agent i to demand equation j ∈ {1, . . . , p}. The weights {ωi
j}

p
j=1 of

each agent i ∈ {1, . . . ,N} are known to that agent. The aforemen-
tioned problem appears in many optimal decision making tasks
such as economic dispatch over power networks [1,2], optimal
routing [3] and economic systems [4].

Literature review: Our paper is related to a large recent literature
on distributed algorithm design for solving a multi-agent opti-
mization problem where the global cost function is a sum of local

E-mail address: solmaz@uci.edu.

convex functions, each representing a private local cost only avail-
able to a single agent, subject to some convex constraints. Some of
the recent literature on distributed optimization algorithm design
includes distributed algorithms implemented both in discrete-
time [5–9] and continuous-time [10–14]. Although some of these
algorithms can solve the optimal resource allocation problem (1),
they require each agent to keep and evolve a copy of the global
decision variable of the problem which is of order N , where N is
the size of network. Such a requirement is costly and unnecessary
for problem (1), as the agents only need to obtain their own re-
spective component of the global decision variable. Distributed op-
timization algorithms that specifically target the optimal resource
allocation problem (1) are presented in [15] in discrete-time form,
and [2,16] in continuous-time form. These algorithms require the
agents to keep and evolve only their respective component of the
global decision variable. However, these algorithms all can solve
the optimal allocation problem (1) subject to single unweighted
demand equation, i.e., ωi

1 = 1, i ∈ {1, . . . ,N} and p = 1
in (1b). Also, these algorithms require the agents to transmit the
gradient of their local cost functions to their neighbors, which
makes these algorithms less favorable for privacy-sensitive appli-
cations. The composition of our algorithm is inspired by the multi-
time scale singularly perturbed systems in control theory (cf. [17]).
Singularly perturbed distributed algorithms are used in [12] for
unconstrained in-network convex optimization, and in [18] for
dynamic consensus problem over networked systems.

Statement of contributions: We propose a novel continuous-time
distributed algorithm to solve the optimal resource allocation
problem (1) over networked systems. We show that our algorithm

http://dx.doi.org/10.1016/j.sysconle.2017.07.012
0167-6911/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.sysconle.2017.07.012
http://www.elsevier.com/locate/sysconle
http://www.elsevier.com/locate/sysconle
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sysconle.2017.07.012&domain=pdf
mailto:solmaz@uci.edu
http://dx.doi.org/10.1016/j.sysconle.2017.07.012


50 S.S. Kia / Systems & Control Letters 107 (2017) 49–57

converges over strongly connected and weight-balanced digraphs
if the local cost functions are strongly convex. Such guarantees also
hold for time-varying strongly connected and weight-balanced di-
graphswith piecewise constant adjacencymatrices if the gradients
of all local cost functions are globally Lipschitz. When the commu-
nication graph is an undirected connected graph, the convergence
is guaranteed for convex local cost functions, as well. Our conver-
gence guarantee is to a point in the optimizer set. The composition
of our algorithm is inspired by the singular perturbation systems
in control theory. The idea behind this composition is that an
average consensus algorithm creates a local copy of the left hand
side of the equality constraint (1b) at each agent. This way, every
agent can create a local copy of its respective part in a centralized
saddle-point dynamical solver used in the literature to solve the
optimization problem (1). In the resulted algorithm, each agent is
only required to keep a copy of its own local decision variable. Also,
agents are not required to share the gradient of their local cost
functions with their neighbors. We use Lyapunov and invariant set
analysis to study the convergence and stability of our proposed
algorithm. A preliminary work related to our work has appeared
in [19].

2. Preliminaries

This section presents our notations, definitions, a review of rel-
evant algebraic graph theory, and the average consensus algorithm
of [20].

2.1. Notations

LetR,R≥0, andR>0, respectively, be the set of real, non-negative
real, and positive real numbers. We let 1n (resp. 0n) denote the
vector of n ones (resp. n zeros), and denote by In the n × n identity
matrix. When clear from the context, we do not specify the matrix
dimensions. We denote the standard Euclidean norm of vector
x ∈ Rn by ∥x∥ =

√
x⊤x. We denote the induced 1-norm, ∞-

norm and spectral norm of a matrix A ∈ Rn×m by, respectively,
∥A∥1, ∥A∥∞ and ∥A∥. In a network of N agents, to distinguish and
emphasize that a variable is local to an agent i ∈ {1, . . . ,N}, we
use superscripts, e.g., f i(xi) is the local function of agent i evaluated
at its own local state xi. Moreover, if pi

∈ Rd is a variable of
agent i ∈ {1, . . . ,N}, the aggregated pi’s of the network is the
vector p = [ p1⊤

, · · · , pN⊤
]
⊤

∈ (Rd)N .
A differentiable function f : Rd

→ R is convex (resp. strictly
convex) over a convex set C ⊆ Rd iff (z − x)⊤(∇f (z) − ∇f (x)) ≥ 0
(resp. (z−x)⊤(∇f (z)−∇f (x)) > 0whenever x ̸= z) for all x, z ∈ C ,
and it ism-strongly convex (m ∈ R>0) iff (z−x)⊤(∇f (z)−∇f (x)) ≥

m∥z − x∥2, for all x, z ∈ C . A function f : Rd
→ Rd is Lipschitz

with constant M ∈ R>0, or simply M-Lipschitz, over a set C ⊆ Rd

iff ∥f(x) − f(y)∥ ≤ M ∥x − y∥, for x, y ∈ C . Function f is globally
Lipschitz if it isM-Lipschitz over Rd. Moreover, it is locally Lipschitz
on Rd if for every point x ∈ Rd there exists a Mx ∈ R>0 such
that ∥f(x) − f(y)∥ ≤ Mx ∥x − y∥ for all y in an open and connected
neighborhood of x.

2.2. Graph theory

We briefly review basic concepts from algebraic graph theory
following [21]. A digraph, is a pair G = (V, E), where V =

{1, . . . ,N} is the node set and E ⊆ V × V is the edge set. An
edge from i to j, denoted by (i, j), means that agent j can send
information to agent i. For an edge (i, j) ∈ E , i is called an in-
neighbor of j and j is called an out-neighbor of i. A graph is undirected
if (i, j) ∈ E anytime (j, i) ∈ E . A directed path is a sequence
of nodes connected by edges. A digraph is strongly connected if
for every pair of nodes there is a directed path connecting them.

A weighted digraph is a triplet G = (V, E,A), where (V, E) is a
digraph and A ∈ RN×N is a weighted adjacency matrix such that
aij > 0 if (i, j) ∈ E and aij = 0, otherwise. A weighted digraph is
undirected if aij = aji for all i, j ∈ V . A connected graph is a strongly
connected and undirected graph. The weighted in- and out-degrees
of a node i are, respectively, di

in = ΣN
j=1aji and di

out = ΣN
j=1aij.

A digraph is weight-balanced if at each node i ∈ V the weighted
out-degree andweighted in-degree coincide. Any connected graph
is weight-balanced. The (out-) Laplacian matrix is L = Dout

− A,
where Dout

= Diag(d1
out, · · · , d

N
out) ∈ RN×N . Note that L1N = 0. A

digraph is weight-balanced iff 1T
NL = 0. We let {λi}

N
i=1 and {λ̂i}

N
i=1,

respectively, be the set of eigenvalues of L and Sym(L) = (L +

L⊤)/2. Based on the structure of L, at least one of the eigenvalues
of L is zero (λ1 = 0) and the rest of them have nonnegative real
parts. For a strongly connected and weight-balanced digraph, zero
is a simple eigenvalue of both L and Sym(L). Moreover, we have

0 < λ̂2I ≤ R⊤ Sym(L)R ≤ λ̂N I, (2)

where λ̂2 and, λ̂N are, respectively, the smallest non-zero eigen-
value and maximum eigenvalue of Sym(L). Here, R ∈ RN×(N−1)

along with r ∈ RN satisfies

r =
1

√
N
1N , r⊤R = 0, R⊤R = IN−1, RR⊤

= IN − rr⊤. (3)

For connected graphs λ̂i = λi, i ∈ V , therefore, 0 < λ2I ≤ R⊤LR ≤

λN I.

2.3. Average consensus algorithm

Let G be a strongly connected and weight-balanced digraph of
N agents. Assume each node i ∈ V has access to a static reference
input ri ∈ Rp. [20] shows that for β ∈ R>0, if each agent i ∈ V ,
implements

v̇i = β

N∑
j=1

aij(yi − yj), (4)

ẏi = −(yi − ri) − β

N∑
j=1

aij(yi − yj) − vi,

starting at yi(0), vi(0)∈Rp,
∑N

j=1v
j(0) = 0, then as t → ∞, its state

yi converges to 1
N

∑N
j=1r

j exponentially fast.

3. Problem statement

We consider the optimal resource allocation problem (1) over
a network of N agents interacting over a digraph G, and under the
following assumption.

Assumption 1. Matrix Ω = [ω1, · · · ,ωN
], where ωi

=

[ωi
1, · · · , ω

i
p]

⊤, i ∈ V , is full row rank. Moreover, the optimization
problem (1) has a finite optimum f ⋆ = f (x⋆). Finally, ∇f i, i ∈ V , is
locally Lipschitz on R.

The first part of Assumption 1 ensures that the feasible set
of optimization problem (1) is non-empty and the problem has
a finite minimizer in the feasible set. Local Lipschitzness of ∇f i,
i ∈ V , guarantees existence and uniqueness of the solutions of
the dynamical solvers that we study in this paper for problem (1)
(cf. [22, Theorem 3.3])—these solvers use ∇f i, i ∈ V .
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