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In Bayesian nonparametrics model such as Dirichlet process mixture (DPM), learning is 
almost exclusive to either variational inference or Gibbs sampling. Yet variational inference 
is seldom mainstream in fast algorithms for DPM mainly due to high computational cost. 
Instead, most fast algorithms are largely based on MAP estimation of Gibbs sampling 
probabilities. However, they usually face intractable posterior and typically degenerate the 
conditional likelihood to overcome the inefficiency. Scalable variational inference such as 
stochastic variational inference exist but these works rely on the same two-step learning 
approach that involves hyperparameters and expectations update. This constitutes to the 
high cost often associated with variational inference. Inspired by fast DPM algorithms, we 
propose using MAP estimation of variational posteriors for approximating expectations. As 
a result, learning can be completed in a single step. However, we encounter undefined 
variational posteriors of log expectation. We overcome this problem by the use of 
lower bounds. When our cluster assignment also uses a MAP estimation, we have a 
global objective known as the maximization–maximization algorithm. We revisit the 
concepts of variational inference and observe that some of the analytical solutions 
obtained by our proposed method are very similar to variational inference. Lastly, we 
compare our fast approach to variational inference and fast DPM algorithms on some 
UCI and real datasets. Experimental results showed that our proposed method obtained 
comparable clustering accuracy and model selection but significantly faster convergence 
than variational inference.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

In clustering, we require beforehand the number of clusters K to use. Bayesian Nonparametric (BNP) does not have this 
issue as it can learn K directly from the dataset. However, one limiting factor of BNP is the expensive cost to compute. 
There are existing works that addressed this issue which we name as fast algorithms of BNP. These works are dedicated 
to achieving fast computation of BNP and in most cases are willing to trade accuracy for efficiency. Also, for mathematical 
convenience they mostly restricted to conjugate distributions from the exponential family, notably the DPM.

Several works dedicated to fast algorithms of Dirichlet process mixture (DPM) have been proposed in the past. A common 
trait in these methods is that MAP estimate is preferred over the slower Gibbs sampling for cluster assignment. An early 
work is DPsearch [1] whereby the authors use MAP estimate on the true posterior. Due to intractable MAP solution, a tighter 
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bound is used on the conditional likelihood for efficiency. Similarly, SUGS [2,3] use MAP estimation for cluster assignment 
by sequentially allocating new samples to clusters that locally maximizes the posterior of DPM. However, they replaced 
the DPM posterior with the posterior of partition model to avoid intractable solution. Inspired by K-means, the authors in 
DP-means [4] applied small variance asymptotics (SVA) to the prior model of DPM. MAP estimate on the probabilities of 
Gibbs sampling for cluster assignment then lead to an objective function that resembles K-means. In [5], a direct posterior 
approach is used but because MAP estimate on the cluster assignment posterior is intractable, by assuming SVA the authors 
similarly arrive at an identical objective function to DP-means. While SVA greatly reduce the complexity in [5,4], it also rob 
away the “rich get richer” property in DPM. MAP-DPM [6] overcame the SVA reliance in [5] by observing that the conjugacy 
leads to the Student-T distribution for the cluster assignment posterior. Cluster assignment probabilities for Gibbs sampling 
is then computed using a simple MAP estimate on the Student-T distribution. Conversely, we can improve the speed of DPM 
by making variational inference based DPM more efficient. Stochastic variational inference [7,8] looked at improving the 
scalability of variational inference by defining a new set of rules that allow local learning from sampled batches of the full 
dataset. In memorized online variational inference for DPM [9], the authors mainly aimed at improving the shortcomings 
of the stochastic variational inference such as requiring careful choices of batch size and learning rate. More crucially, the 
learning approach to variational posteriors [10–16] still remained largely unchanged from past works [17,18].

There are two key observations on fast DPM algorithms:
i) Most works do not consider variational inference as mainstream due to the difficulty in implementation and high 

computation cost. Their works are largely based on MAP estimate of the true posterior for cluster assignment. However, 
they face intractable posterior and in return they usually degenerate the conditional likelihood (e.g. SVA) to overcome the 
inefficiency.

ii) Most works using variational inference rely on a two-step learning approach (i.e. first compute hyperparameter up-
dates then compute expectation of variational posteriors e.g. Algorithm 1). Also, expressions for the expectation of the 
variational posteriors cannot be obtained independently. Instead, they must rely on the mathematical convenience of con-
jugate prior where the expectation of the variational posteriors is known to have a similar expression as the statistical 
moments of their conjugate prior counterparts. By restricting to prior models that already have predefined closed-form 
expressions for their statistical moments, only then we can obtain expressions for the expectation of the variational poste-
riors. Moreover, computing the expectation for the cluster assignment variational posterior is more expensive than a MAP 
estimate. This two-step approach mainly constitutes to the inflexibility and high cost involved.

Inspired by the challenges of fast DPM algorithms, this paper contributes in the followings:

i) We no longer need to refer to any predefined closed-form expressions from the statistical moments of the conjugate 
prior. Instead, we directly approximate expectations of variational posteriors by using MAP estimation. We also use 
MAP estimation on the posterior of cluster assignment but in a variational framework. Thus, variational learning is now 
completed in a single step in Algorithm 2.

ii) We show that the use of lower bounds for computing expectation functions greatly reduce the analytical complexity 
involved in our approach.

iii) We revisit the concepts of variational inference and observe that some analytical solution of expectations obtained by 
our proposed method have very similar expressions to variational inference. Convergence of our method is also briefly 
discussed.

iv) Lastly, we compare our work mainly with DP-means and variational inference on synthetic dataset, UCI datasets and 
real datasets. Empirical results showed that our proposed method obtained comparable clustering accuracy and model 
selection but significantly faster convergence than variational inference.

2. Related work

In DPM-EM [19,20], Heinzl et al. used the EM algorithm for the inference of DPM with linear mixture model. Our work 
mainly differs from DPM-EM in several ways. Firstly, they only considered a maximum likelihood approach to the mixture 
model whereas we used a Bayesian approach. Secondly, their proposed solution is based on the EM algorithm, whereas we 
used the MM algorithm within a variational inference framework. Lastly, while linear mixture model is more expressive than 
GMM is used to compute longitudinal data, it comes at an extra computational cost. Thus, linear mixture model may be 
less desirable when it comes to application that require fast DPM computation. One key similarity we share is that both our 
expression for the cluster weight variable, v have identical closed-form expression despite both method employing different 
mixture models. This is possible since the cluster assignment path is disjointed from the mixture model path in the graph 
model of DPM in Fig. 1. Thus, inference of v is essentially the same problem for both DPMs despite using different mixture 
models and approach.

Recently, in [21,22] variational Maximization–Maximization was proposed to successfully perform learning for the 
Bayesian inference of GMM [22] and the Sparse Coding based GMM [21]. The main difference between this work and 
MM-GMM [22] is that the theoretical comparison between variational Maximization–Maximization (MM) and variational 
Expectational–Expectation (EE) is now extended to stochastic process. Due to having a more complex model, there is greater 
difficulty computing expectations of variational posteriors here.
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