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A B S T R A C T

In the paper we present a low-order virtual element formulation for modelling the strain-softening response of
quasi-brittle materials. For this purpose, a formulation in two-dimensions is considered, with virtual elements
having arbitrary shape. The method is based on minimization of an incremental energy expression, with a novel
construction of the stabilization energy for isotropic elasto-damage. A set of numerical examples, illustrating the
efficiency of the proposed method, complements the paper.

1. Introduction

The Virtual Element Method (VEM) has been recently developed
in keeping with Mimetic Finite Difference [12], characterizing it as a
Galerkin finite element-type re-formulation. The basic principles have
been presented in the seminal work by Ref. [5]. Subsequent significant
contributions in explaining the theoretical basis and providing exam-
ples of implementations can be found in Refs. [7,13,19].

The VEM permits the numerical solution of boundary value prob-
lems on arbitrary polyhedral meshes, including convex and non-convex
elements, very stretched elements, hanging nodes and collapsing nodes.
The great flexibility in dealing with very general geometries and the
robust mathematical basis of the method pave the way for possible
use in very general cases. They are ranging from crack propagation
in fractured solids, to modelling the texture evolution in polycrystalline
materials, up to reproducing the complex behaviour of structured mate-
rials. Applications have been devoted so far to linear elastic two- and
three-dimensional problems [1,6,19], discrete fracture network simula-
tions [10], eigenvalue problems [29], contact problems [45], topology
optimization [20] and nonlinear problems [2,8,14]. Stabilization pro-
cedures for the virtual element method, which are well known from
the work of [9] for finite elements, are described in Ref. [13] for lin-
ear Poisson problems. In the VEM formulation a stabilization term is
mandatory. The structure of the VEM, indeed, typically comprises a
term in the weak formulation or energy functional in which the quan-
tity 𝜙v, here deformation, is replaced by its projection Π𝜙v onto a poly-
nomial space. This results in a rank-deficient structure, so that it is nec-
essary to add a stabilization term to the formulation, see Refs. [5,6,14],
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where in the latter the scalar stabilization parameter of the linear
case being replaced by one that depends on the fourth-order elasticity
tensor.

In the framework of compressible and incompressible nonlinear
elasticity, a novel stabilization technique has been proposed in Ref.
[44], inspired by an idea first proposed in Ref. [30], generalized in Ref.
[11] and simplified in Ref. [24]. The key innovative aspect is to add
to the positive semidefinite mean strain energy, Ψ, a positive-definite
energy, Ψ̂, evaluated using full quadrature. Moreover, for consistency
a term involving Ψ̂ as a function of the mean strain is subtracted. The
resulting strain energy is the sum of the original energy as a function
of the projected displacement, Ψ(Πuv), and the term Ψ̂(Πuv) to which
a positive definite stabilization energy as a function of the displace-
ment and its projection are respectively added and subtracted. In the
terms involving Ψ̂(uv), the quadrature is carried out by constructing a
triangular mesh in the element, without introducing additional degrees
of freedom, since the nodal points are those of the original element.
The same stabilization has been successfully applied also to problems
of finite strain plasticity [43].

In the present paper, this stabilization technique is modified and
exploited in the framework of a virtual element formulation for 2D
scalar damage problems.

The main idea is to test the effectiveness of the VEM in dealing with
highly localized strains due to material instabilities, typically exhibited
by quasi-brittle materials undergoing severe loading conditions.

In the last decades, many efforts have been focused on the formu-
lation of continuum damage models able to predict the irreversible
phenomena related to the onset and evolution of void formation,
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micro-cracking and strain-softening in quasi-brittle materials. Based on
Kachanov’s pioneered work [22], different phenomenological models
have been proposed both accounting for isotropic [16,25,27,33,40,41],
or anisotropic [21,26,34,41] damage response. Special attention has
been devoted to develop strategies able to overcome the well-known
spurious mesh sensitivity problems, occurring in finite elements com-
putations when, in the presence of softening behaviour, the gov-
erning differential equations may loose ellipticity and resort to ill-
posed boundary value problems. Successful remedies have been pro-
posed by recourse to non-local continuum theories [17,18], which pos-
sess intrinsic regularization properties due to the natural introduction
of characteristic lengths, or either recourse to viscous regularization
[31,42]. Alternative solutions to the pathological mesh dependency
in damage models are non-local constitutive models, see e.g. Ref. [3]
for a comprehensive survey, or local models properly enriched by
a dependence of the material properties on the element size, as in
Refs. [32,33,40].

We focus here on an isotropic damage law, in the framework of
linearised kinematics, with different thresholds in tensions and com-
pression, as proposed in Ref. [33], and we adopt as regularization tech-
nique, alternatively, the last two aforementioned approaches to which
we will refer as ”nonlocal” and ”local”.

The paper is organized as follows: in Section 2 the governing
equations of the local and non-local scalar damage model are briefly
recalled; Section 3 is devoted to the construction of the linear ansatz
functions of the proposed virtual element approach; the virtual element
formulation is, then, fully developed in Section 4; a number of illus-
trative applications is proposed in Section 5, and, finally, in Section 6
some concluding remarks are reported.

2. Governing equations for isotropic damage model

Consider an initially elastic body that occupies the bounded domain
Ω ⊂ ℝ2. Let Γ = ΓD ∪ ΓN be the boundary of Ω, with ΓD the Dirichlet
and ΓN the Neumann boundaries, such that ΓD ∩ ΓN = ∅. Each material
point 𝐱 is characterized by the displacement field 𝐮 that is the primary
unknown variable. The symmetric Cauchy stress 𝝈 satisfies the linear
momentum balance

−div𝝈 = 𝐟 , (1)

with 𝐟 being the body force.
The Dirichlet and Neumann boundary conditions hold, respectively,

as:

𝐮 = 𝐮, on ΓD

𝝈𝐧 = 𝐭, on ΓN .
(2)

with 𝐮 the prescribed displacement, 𝐧 the outward unit normal vector
and 𝐭 the surface traction.

The strain-displacement relation is given by

𝜺 = 1
2
(∇𝐮 +∇T𝐮). (3)

For isotropic damage a scalar variable d is introduced, satisfying 0 ≤
d ≤ 1. At a given point of the damaged material, the free energy is
expressed as a function approaching zero as the damage d increases:

Ψ(𝜺, d) = (1 − d)Ψ0(𝜺). (4)

Here Ψ0 is the initial undamaged elastic energy that reads as

Ψ0(𝜺) = 1
2
𝜺

T𝔻𝜺 = 1
2
𝜺

T
𝝈EL. (5)

where 𝝈EL = 𝔻𝜺 = 𝜆tr(𝜺)𝐈+ 2𝜇𝜺 is the stress for an initially homoge-
neous isotropic elastic material, with 𝔻 being the elasticity tensor, and

𝜆 and 𝜇 the Lamé constants.
The energetic consistency of the constitutive model is ensured by

the fulfilment of the Clausius-Planck inequality [28],

Ḋ =
(
𝝈 − 𝜕Ψ

𝜕𝜺

)T
𝜺̇− 𝜕Ψ

𝜕d
ḋ ≥ 0 (6)

where Ḋ is the rate of the mechanical energy dissipation defined for
arbitrary infinitesimal variations 𝜺̇. Using the Coleman’s method [15] it
follows that the constitutive relation is

𝝈 = 𝜕Ψ
𝜕𝜺

= (1 − d)𝔻𝜺 (7)

and

Ḋ = −𝜕Ψ
𝜕d

ḋ = −Ψ0ḋ ≥ 0. (8)

Following [33,41], an equivalent effective stress 𝜏 is defined as a
suitable energy norm of the undamaged stress tensor 𝝈

0 and used to
compare different material states. Here we adopt a damage model with
different thresholds in tension and compression. Hence we choose 𝜏 as

𝜏 =
(
𝜁 + 1 − 𝜁

n

)√
Ψ0(𝜺), with 𝜁 =

∑3
i=1 ⟨𝜎0

i ⟩∑3
i=1 |𝜎0

i | , (9)

where 𝜁 is a weight factor depending on the elastic principal stresses
𝜎0

i , ⟨•⟩ is the Macaulay bracket, and n = fc∕ft is the ratio between com-
pressive fc and tensile ft strength of the material.

The damage criterion is defined via the limit damage surface, i.e. a
function F(𝜏 t , rt) that splits the admissible stress space into the elastic
domain (when F < 0) and the damage domain (when F = 0). It depends
both on the equivalent effective stress 𝜏 t and on a material parameter
representing the damage threshold rt at the current time t.

The most general form of F(𝜏, r) among different possibilities is

F(𝜏 t , rt) = G(𝜏 t) − G(rt), ∀t ≥ 0, (10)

where G(•) is a suitable monotonic scalar function.
The damage is governed by the following evolution equations

ṙ = 𝛾̇ , ḋ = 𝛾̇ 𝜕F
𝜕𝜏
, (11)

with 𝛾̇ being the damage multiplier adopted to define the loading-
unloading conditions (equivalent to the plastic multiplier in the rate
independent plasticity). The following Kuhn-Tucker relations have also
to be satisfied

F(𝜏, r) ≤ 0, 𝛾̇ ≥ 0, 𝛾̇F(𝜏, r) = 0. (12)

It is possible to directly integrate the evolution of the internal variables,
as in Refs. [33,41], and obtain

rt = max
(
r0,max(𝜏s)

)
, 0 ≤ s ≤ t d = G(rt). (13)

where r0 is a characteristic of the material, i.e. the initial damage
threshold for the virgin material and max (𝜏s) is the maximum equiva-
lent effective stress attained until current time t.

Among different possible choices of explicit functions for the scalar
damage d, two options are frequently used in literature, e.g. Refs.
[33,40]:

1. Linear damage law

d1(rt) = 1
1 + H1

(
1 − ft

rt

)
, ft ≤ rt ≤ ∞, (14)

where H1 = f2
c ∕(2n2Gf E0), E0 is the elastic modulus, and Gf the frac-

ture energy per unit area.
2. Exponential damage law

d2(rt) = 1 − ft
rt exp

[
H2

(
1 − rt

ft

)]
, ft ≤ rt ≤ ∞, (15)

where H2 =
(

n2Gf E0

f2
c

− 1
2

)−1
≥ 0.
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