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a b s t r a c t 

This paper aims to design a fast convergent distributed cooperative learning (DCL) algorithm for feedfor- 

ward neural networks with random weights (FNNRWs) over undirected and connected networks. First, a 

continuous-time fast convergent DCL algorithm is proposed, whose finite-time convergence is guaranteed 

based on the Lyapunov method. Second, we extend this algorithm to a discrete-time form by using the 

fourth-order Runge–Kutta method. Compared with the distributed alternating direction method of mul- 

tipliers (ADMM) and the Zero-Gradient-Sum-based (ZGS-based) algorithms, the proposed algorithm has 

high learning capability and convergence speed. Simulation results demonstrate that the proposed algo- 

rithm has fast convergence rate, and the convergence rate may be adjusted by properly selecting some 

tuning parameters. 

© 2017 Published by Elsevier B.V. 

1. Introduction 

The topic of learning in distributed environments has received 

increased attention in recent years [1–6] . With the advent of large 

data, new research in the field of large-scale machine learning has 

been widely concerned. Due to resource constraints, the large-scale 

data have to be scattered storage. In addition, the traditional cen- 

tralized data processing could not satisfy the requirement of pri- 

vacy and confidentiality in some cases. Therefore, the distributed 

machine learning problem is worthy of study. 

In this paper, we aim to study a distributed machine learning 

problem in an undirected and connected communication network 

based on the feedforward neural network with random weights 

(FNNRWs). This problem is a type of distributed in-network data 

processing problem, where training data are gathered from a set of 

agents connected in a network, and each agent only has access to 

local information without the involvement of any centralized coor- 

dination. Researchers have been committed to finding a better way 

of cooperation for distributed cooperative learning (DCL) problems 

for the in-network data processing in a distributed manner. Sev- 

eral approaches are proposed to these problems including the use 

of alternating direction method of multipliers (ADMM) strategies 
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[7,8] , the distributed average consensus (DAC) strategies [7,9] , the 

diffusion least-mean square (LMS) strategies [10,11] , and so on. 

In general, solving distributed machine learning problem is 

more challenging than solving traditional centralized machine 

learning problem. It is difficult to obtain a global information in 

a distributed manner when training data in the network coop- 

eratively find an identical but un-known pattern only by sharing 

learned knowledge with their neighboring nodes. Due to this, dis- 

tributed large-scale machine learning strategies need to be de- 

signed to model the communication between agents. In [12] , the 

authors developed a DCL algorithm with ADMM optimization pro- 

cedure for Echo State Networks, and it can solve the global prob- 

lem in asymptotic convergence rate. Two algorithms for Random 

Vector Functional-link (RVFL) were proposed in [7] by using the 

DAC and the ADMM strategies, respectively. However, from the 

comparisons results with two strategies we can get the DCL al- 

gorithm with DAC-based performs better than the DCL algorithm 

with ADMM-based in terms of computational complexity and ef- 

fectiveness. Furthermore, the ADMM-based DCL algorithm only 

can achieve asymptotic convergence rate, and the DAC-based DCL 

algorithm can obtain exponential convergence rate. Some DCL 

problems can be regarded as distributed convex optimization prob- 

lems, especially for single layer feedforward neural networks. 

Zero-Gradient-Sum (ZGS) strategy is one of the effective ways to 

minimize the sum of the strong convex functions in a distributed 

manner [13–15] . The main idea is to design an algorithm that en- 

sure the sum of all local functional gradients remain at zero [14] , 

which is more helpful in finding the optimal value. In [16] , the 
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authors followed the ZGS strategy and proposed an algorithm for 

the FNNRWs for finding the optimal learning weight, which can 

reach asymptotic convergence rate. It is worth mentioning that 

these DCL algorithms can protect the privacy of data in the learn- 

ing process, and can be suit for sundry large-scale distributed ma- 

chine learning problems well. 

However, these algorithms can only achieve asymptotical con- 

vergence. In reality, a finite convergence time is needed, especially 

for systems that require high control precision and good robust- 

ness. The purpose of this work is to develop a fast convergent 

DCL algorithm for FNNRWs that is able to solve distributed ma- 

chine learning problems with fast time by local interactions. First, 

we propose a continuous-time fast convergent DCL algorithm. Sec- 

ond, the convergence analysis based on the Lyapunov method is 

given. The theoretical analysis demonstrates that our algorithm has 

faster convergence speed in a fully distributed fashion compared 

with other DCL algorithms [12,16] . Third, for practical use, we ex- 

tend this continuous-time algorithm to a discrete-time form by 

using the fourth-order Runge–Kutta method. Moreover, we show 

the comparison with the distributed ADMM and the ZGS-based 

algorithms from four datasets. Simulation results show that our 

algorithm illustrates the effectiveness and better performance in 

convergence rate than others. Finally, we subsequently show the 

performance of our algorithm with different parameters. Simula- 

tion results verify that the convergence rate can be adjusted by 

properly selecting some tuning parameters. 

The remainder of the paper is organized as follows. 

Section 2 gives some preliminaries. In Section 3 , we show the 

problem formulation. Our fast convergent DCL algorithm and the 

comparative analysis are described in Section 4 . In Section 5 , the 

numerical simulations are given. Section 6 concludes the paper. 

Notations . R and R 

+ are the set of real numbers and the 

set of nonnegative real numbers, respectively; ‖ · ‖ represents 

Euclidean norm in R 

n ; C � D = { c 11 D , ..., c 1 m 

D ; ... ; c n 1 D , ..., c nm 

D } ∈ 

R 

np×mq , where C = [ c i j ] ∈ R 

n ×m , D ∈ R 

p×q , and � is called the 

Kronecker product; I n ∈ R 

n ×n is the identity matrix; ∇f and 

∇ 

2 f denote the gradient and the Hessian matrix of f : R 

n → 

R , respectively; a � b is defined by [ a 1 b 1 , a 2 b 2 , ... a n b n ] 
T , 

where a = (a 1 , a 2 , ..., a n ) 
T ∈ R 

n , b = (b 1 , b 2 , ..., b n ) 
T ∈ R 

n ; Sig ( a ) = 

( sig (a 1 ) , sig (a 2 ) , ..., sig (a n )) 
T , where sig( · ) denotes the sign func- 

tion; | a | β = (| a 1 | β , | a 2 | β , ..., | a n | β ) T , where β > 0 is a constant; A 

≤ B means A - B is a negative semidefinite matrix). 

2. Preliminaries 

In this section, some useful preliminaries for the proof of 

the main results are provided as follows, such as graph theory, 

the structure of FNNRWs and the finite-time stability theorem of 

continuous-time system. 

2.1. Graph theory 

Consider a network with N agents labeled as 1, 2, ..., N . The 

communication topology among the agents can be modeled by 

an undirected and connected graph G (V(G ) , E(G )) , where V(G) = 

{ 1 , ..., N} and E(G) ⊂ {{ i, j} : , i, j ∈ V, i 	 = j} denote the vertex set 

and the edge set, respectively. The graph G is undirected which 

indicates that for arbitrary i, j ∈ V(G) , if (i, j) ∈ E(G) , ( j, i ) ∈ E(G) . 

Moreover, we let A (G) = [ a i j ] ∈ R 

N×N be the adjacency matrix, 

for which a i j = a ji if ( i, j ) is an edge in G, and a i j = 0 , oth- 

erwise. Suppose that each node has no self edge, i.e. a ii = 0 . 

D(G) = diag { d 1 , ..., d N } represents the degree matrix of G with d i = ∑ N 
j=1 a i j . L (G) = D(G) − A (G) is known as the Laplacian matrix of 

G. If Ḡ is the complete graph of G, we can get the properties: 

{
L ( ̄G ) 2 = N L ( ̄G ) , 
λ2 L ( ̄G ) ≤ N L (G) , 

(1) 

where λ2 is the second smallest eigenvalue of L (G) , also known as 

the algebraic connectivity of G. 

2.2. FNNRWs 

Definition 1. ( [17,18] ). For input vector z ∈ R 

m with l hidden neu- 

rons, the n -dimensional output function of FNNRW with zero bias 

of output neuron can be mathematically modeled as: 

f l ( z ) = 

l ∑ 

i =1 

s i ( z ; εi , b i ) w i , (2) 

where s i denotes the output function of the i th hidden neuron 

and is often referred to as functional link; εi ∈ R 

m is the weight 

vector connecting the i th hidden neuron, and b i ∈ R denotes the 

bias of output of the i th hidden neuron. At the beginning of train- 

ing, they are randomly chosen from a predefined probability distri- 

bution and fixed during the training process, which independently 

of the training data; w i ∈ R 

n is the output weight vector, which 

connects the output neurons with the i th hidden neuron. 

A set with M samples is denoted as D = { X , Y } , where X ∈ 

R 

M×m is the input set and Y ∈ R 

M×n is the output set. The cost 

function of all samples can be written as follows 

E( W ) glob = 

1 

2 

‖ Y − S ( X ) W ‖ 

2 
2 + 

K 

2 

‖ W ‖ 

2 
2 , (3) 

where 

S( X ) = 

⎛ 

⎝ 

s 1 ( x 1 ) · · · s l ( x 1 ) 
. . . 

. . . 
. . . 

s 1 ( x M 

) · · · s l ( x M 

) 

⎞ 

⎠ 

M×l 

, W = 

⎛ 

⎝ 

w 

T 
1 

. . . 

w 

T 
l 

⎞ 

⎠ 

l×n 

, 

and K > 0 is a tunable parameter which provides a tradeoff be- 

tween the regularized item and the training errors. 

To minimize the cost function is equivalent to find the optimal 

learning weights, which can be formulated as a standard regular- 

ized least-square problem. Obviously, whose solution is given by 

W 

∗ = ( S ( X ) T S ( X ) + K I ) −1 S ( X ) T Y , (4) 

where W 

∗ is the global optimal weight. This result can be obtained 

without the iterative-training process. Furthermore, this result can 

be widely used in multi-valued regression and multi-class classifi- 

cation. 

2.3. Finite-time stability 

Lemma 1 ( [19,20] ). Consider the system 

˙ x = g(t, x (t)) , g(0 , t) = 0 , x ∈ U 0 ⊂ R 

n , (5) 

where g : U 0 × R 

+ → R 

n is continuous in an open neighborhood U 0 

of origin x = 0 . Supposing there is a continuous positive definite 

Lyapunov function V ( x (t)) defined on U × R 

+ , where U ⊂ U 0 is the 

neighborhood of the origin. If there are real numbers λ> 0, α ∈ (0, 

1), such that ˙ V ≤ −λV α is established on U , then the system (5) is 

finite-time stable with the setting time T bounded by 

T ≤ V 

1 −α(x (t 0 )) 

λ(1 − α) 
. (6) 
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