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a b s t r a c t 

Fisher discriminant analysis is a classical method for classification and dimension reduction jointly. Reg- 

ularized FDA (RFDA) and kernel FAD (KFDA) are two important variants. However, RFDA will get stuck in 

computational burden due to either the high dimension of data or the big number of data and KFDA has 

similar computational burden due to kernel operations. We propose fast FDA algorithms based on random 

projection and random feature map to accelerate FDA and kernel FDA. We give theoretical guarantee that 

the fast FDA algorithms using random projection have good generalization ability in comparison with the 

conventional regularized FDA. We also give a theoretical guarantee that the pseudoinverse FDA based on 

random feature map can share similar generalization ability with the conventional kernel FDA. Experi- 

mental results further validate that our methods are powerful. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Fisher discriminant analysis (FDA) is an enduring classification 

method in multivariate analysis and machine learning. It has been 

used in many applications such as face recognition [1,2] , text clas- 

sification [3,4] , microarray data classification [5] , etc. The conven- 

tional FDA problem is to find an optimal linear transformation by 

minimizing the total class distance and maximizing the between 

class distance simultaneously. It is well known that this optimiza- 

tion problem can be formulated as a generalized eigen-problem 

[6] that involves the between-class scatter matrix and total scatter 

matrix of the data points. However, a standard solver requires the 

total scatter matrix to be nonsingular, which is usually not the case 

in real world applications. For example, microarray datasets which 

have the large data dimension but small data number regime yield 

a singular total scatter matrix. 

To address this issue, pseudo-inverse FDA and regularized FDA 

(RFDA) were proposed. Besides, several two-stage approximate ap- 

proaches were also proposed, such as PCA + FDA [1] , QR + FDA 

[7] and SVD + QR + FDA [8] . However, these approaches cost much 

time in matrix multiplication applied to high-dimensional data 

problems such text classification, image recognition and microar- 

ray dataset. 

Kernel techniques have been introduced into FDA to circumvent 

the linearity assumption, because they work by nonlinearly map- 
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ping vectors in the input space to a higher-dimensional feature 

space and then implementing the traditional version in the fea- 

ture space. There have been many different approaches to devising 

kernel FDA [9–13] . However, the kernel technique is hard to scale 

to massive data set, because O ( n 3 ) computation complexity is nec- 

essary, where n is the number of train data. 

To overcome the problem of FDA and KFDA, we resort to ran- 

dom projection and random feature map, respectively. Random 

projection is a useful tool in numerical linear algebra [14,15] , im- 

age analysis [16–18] , and machine learning [19] , etc. Random pro- 

jection is also the key factor of several fast matrix decompositions, 

like fast singular value decomposition [20] . Random feature map 

plays a significant role in kernel method [21] . It has been widely 

used to large-scale kernel machines [22,23] . 

In this paper, we first apply random projection to the n × p 

data matrix with n � p or p � n , where n and p are number and 

dimension of training data, respectively. After random projection, 

the data matrix will reduce to a much smaller matrix, then FDA 

can be trained efficiently. And our theoretical analysis shows that 

random projection preserves the generalization ability of the FDA 

on the original training data. 

Further more, to circumvent the weakness of KFDA, we map 

data into a high finite dimension using random feature map, then 

apply FDA algorithms or a fast approximate FDA algorithm such 

as QR + FDA to the mapped data set. Our work gives theoretical 

analysis that FDA using random feature map approximates kernel 

fisher discriminant analysis well. 

Finally, our empirical study invalidates the effectiveness and ef- 

ficiency of our methods. 

http://dx.doi.org/10.1016/j.patcog.2017.06.029 
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2. Background and previous work 

In this paper, we are concerned with a multi-class classification 

problem. Given a set of n p -dimensional data points, { x 1 , . . . , x n } ∈ 

R 

p , we assume that the x i are to be grouped into c disjoint 

classes and that each x i belongs to one and only one class. We 

let E = [ e i j ] be an n × c indicator matrix with e i j = 1 if input x i 
is in class j and e i j = 0 otherwise. For these n data points, each 

group has n j data points so that 
∑ c 

j=1 n j = n . Then, we define 

� = diag (n 1 , . . . , n c )(c × c) . 

2.1. Notation 

Throughout this paper, we let I m 

denote the m × m identity 

matrix, 1 n denote the n × 1 vector of ones, 0 denote the zero vec- 

tor or matrix of appropriate size, and H = I n − 1 
n 1 n 1 

T 
n is the n × n 

centering matrix. For convenience, we just use I with appropriate 

size sometimes. 

Let ρ = rank (A ) ≤ min { m, n } and k ≤ ρ . The singular value de- 

composition (SVD) of A can be written as 

A = 

ρ∑ 

i =1 

σi u i v 
T 
i = 

[
U k U k ⊥ 

][�k 0 

0 �k ⊥ 

][
V 

T 
k 

V 

T 
k ⊥ 

]
, 

where U k ( m × k ), �k ( k × k ), and V k ( n × k ) correspond to the top 

k singular values. We also use σi = σi (A ) to denote the i th largest 

singular value, σ max ( A ) to denote the largest singular value, and 

σ min ( A ) to denote the smallest nonzero singular value of A . When 

A is symmetric positive semi-definite (SPSD), the SVD is identical 

to the eigenvalue decomposition, in which case we have U A = V A , 

λi (A ) = σi (A ) , and λmin (A ) = σmin (A ) where λi ( A ) and λmin ( A ) are 

i -th largest and smallest non-zero eigenvalues of A , respectively. 

Besides, ‖ A ‖ � σ 1 is the spectral norm and ‖ A ‖ F = ( 
∑ 

i, j a 
2 
i j 
) 1 / 2 = 

( 
∑ 

i σ
2 
i 
) 1 / 2 is the Frobenius norm. The stable rank of A is defined 

as sr (A ) = ‖ A ‖ 2 
F 
/ ‖ A ‖ 2 . 

2.2. Fisher linear discriminant analysis 

Suppose the input instances are partitioned into c classes which 

can be expressed as X = [ X 1 , X 2 , . . . , X c ] , where X i ∈ R 

n i ×p con- 

tains n i instances from the i th class and 

∑ c 
i =1 n i = n . The conven- 

tional FDA is to find the optimal linear transformation A ∈ R 

p×q 

that preserves the class structure in a low dimensional space as 

well as in the original space. That is, A maps each x i of X in the 

p -dimensional space to a vector y i in the q -dimensional space. 

The within-class, between-class, and total scatter matrices are 

defined as follows 

S w 

= 

1 

n 

c ∑ 

i =1 

∑ 

x ∈ X i 
(x − m i )(x − m i ) 

T , 

S b = 

1 

n 

c ∑ 

i =1 

n i (m i − m )(m i − m ) T , 

S t = S b + S w 

, 

where m i = 

1 
n i 

∑ 

x i ∈ X i x i is the mean of the i th class and m = 

1 
n 

∑ 

x i ∈ X x i is the mean of the whole data set. 

The conventional FDA solves the following generalized eigen- 

problem: 

S b a j = λ j S t a j , λ1 ≥ λ2 ≥, . . . , ≥ λq +1 = 0 (1) 

where q ≤ min (p, c − 1) and where we refer to a j as the j th dis- 

criminant direction. Eigen-problem (1) can be expressed in matrix 

form as follows: 

S b A = S t A �, 

where A = [ a 1 , . . . , a q ] and � = diag (λ1 , . . . , λq ) . If S t is nonsingu- 

lar, we obtain 

S −1 
t S b A = A �. 

However, in many application such as information retrieval, face 

recognition and microarray analysis, S t in question can be singular 

since the dimension p exceeds the number of data points in gen- 

eral. 

There are two variants of the conventional FDA in the literature 

to handle the ill-conditioned problem that S t is singular. The first 

variant, the pseudo-inverse method, replaces S −1 
t by S 

† 
t and solves 

the following eigen-problem: 

S † t S b A = A �. 

Note that S 
† 
t exists and is unique. Moreover, S 

† 
t is identical to S −1 

t 

whenever S t is nonsingular. 

The second variant is referred as the regularized fisher discrim- 

inant analysis (RFDA). It replaces S t by S t + δ2 I p and solves the fol- 

lowing eigen-problem: 

(S t + δ2 I p ) 
−1 S b A = A �. (2) 

2.3. Kernel discriminant analysis 

To apply FDA to nonlinear data, many KDA algorithms have 

been devised by using a so-called kernel trick. The kernel method 

first maps the original data into a high dimensional space H by a 

nonlinear transformation φ : R 

p → H. Typically, φ is explicitly un- 

available and we only know a kernel function k : R 

p × R 

p → R such 

that k (x 1 , x 2 ) = φ(x 1 ) 
T φ(x 2 ) . 

In the sequel, we use the tilde notation to denote vectors and 

matrices in the feature space. For example, the data vectors and 

mean vectors in the feature space are denoted as ˜ x i and ˜ m j . Ac- 

cordingly, ˜ X = [ ̃ x 1 , . . . , ̃  x n ](n × g) and 

˜ M = [ ̃  m 1 , . . . , ˜ m c ](c × g) are 

the data and mean matrices in the feature space. Here g is the 

dimension of the feature space. Although g is possibly infinite, we 

here assume that it is finite but not necessarily known. Kernel dis- 

criminant analysis (KDA) seeks to solve the following generalized 

eigen-problem: 

˜ S b ̃  A = 

˜ S t ̃  A �, 

where ˜ S t and 

˜ S b are the pooled scatter matrix and the between- 

class scatter matrix in H, respectively: 

˜ S b = 

1 

n 

c ∑ 

i =1 

n i ( ̃  m i − ˜ m )( ̃  m i − ˜ m ) T , 

˜ S t = 

1 

n 

n ∑ 

i =1 

( ̃ x i − ˜ m )( ̃ x i − ˜ m ) T . 

Similar to FDA, KDA has pseudoinverse and regularized exten- 

sion version as follows 

˜ S † t 
˜ S b ̃  A = ̃

 A �, 

( ̃ S t + δ2 I g ) 
−1 ˜ S b ̃  A = ̃

 A �. (3) 

2.4. Regularized Fisher discriminant analysis 

In [13] , The eigen-problem in (2) was reformulated as 

G �− 1 
2 E 

T HXA = A �, 

G = (XHX 

T + δ2 I ) −1 XHE �− 1 
2 , (4) 

and 

G = XH (HX 

T XH + δ2 I ) −1 E �− 1 
2 . (5) 
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