Astronomy and Computing 20 (2017) 44-51

Contents lists available at ScienceDirect

Astronomy and
Computing

Astronomy and Computing

journal homepage: www.elsevier.com/locate/ascom

Full length article

A fast algorithm for identifying friends-of-friends halos
Y. Feng >, C. Modi

2 Berkeley Center for Cosmological Physics Campbell Hall 341, University of California, Berkeley CA 94720, United States
b Berkeley Institute for Data Science, Doe Library 140, University of California, Berkeley CA 94720, United States

@ CrossMark

ARTICLE INFO ABSTRACT

Article history:

Received 12 July 2016
Accepted 12 May 2017
Available online 19 May 2017

We describe a simple and fast algorithm for identifying friends-of-friends features and prove its correct-
ness. The algorithm avoids unnecessary expensive neighbor queries, uses minimal memory overhead,
and rejects slowdown in high over-density regions. We define our algorithm formally based on pair
enumeration, a problem that has been heavily studied in fast 2-point correlation codes and our reference
Keywords: implementation employs a dual I(D—trge correlation function code. We copstru.ct features in a hierarchical
Cosmology tree structure, and use a splay operation to redgce the average cost of 1dent1fy1ng.the root of a feature
Halo from O[log L] to O[1] (L is the size of a feature) without additional memory costs. This reduces the overall
time complexity of merging trees from O[L log L] to O[L], reducing the number of operations per splay by
orders of magnitude. We next introduce a pruning operation that skips merge operations between two
fully self-connected KD-tree nodes. This improves the robustness of the algorithm, reducing the number
of merge operations in high density peaks from 0[6%] to O[§]. We show that for cosmological data set
the algorithm eliminates more than half of merge operations for typically used linking lengths b ~ 0.2
(relative to mean separation). Furthermore, our algorithm is extremely simple and easy to implement on
top of an existing pair enumeration code, reusing the optimization effort that has been invested in fast
correlation function codes.

Simulation
Algorithm
Feature identification

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Friends-of-Friends clustering (FOF) is a common problem in
cosmology for identifying features (clusters, usually called halos or
groups) in density fields. Three common uses are (1) to find halos
from N-body computer simulations in the 3-dimensional configu-
ration space (Davis et al., 1985); (2) to find sub structures inside
halos from N-body computer simulations in the 6-dimensional
phase space (White et al., 2010; Behroozi et al., 2013); (3) and
galaxy clusters from observational catalogs (Murphy et al., 2012)
in the red-shifted configuration space. To assemble a physical cata-
log based on the feature catalog from the FOF algorithm, it is typical
to prune the features (with some dynamical infall model), and to
compute and associate additional physical attributes (e.g. spherical
over-density parameters).

FOF algorithms identify features (or clusters) of points that are
(spatially) separated by a distance that is less than a threshold
(linking length b, typically given in units of mean separation be-
tween points) and assigns them a common label. A typical algo-
rithm that solves this involves a breadth-first-search (henceforth

* Corresponding author at: Berkeley Center for Cosmological Physics Campbell
Hall 341, University of California, Berkeley CA 94720, United States.
E-mail addresses: yfeng1@berkeley.edu (Y. Feng), modichirag@berkeley.edu
(C. Modi).

http://dx.doi.org/10.1016/j.ascom.2017.05.004
2213-1337/© 2017 Elsevier B.V. All rights reserved.

BFS). During each visit of BFS, a neighbor query returns all of
the particles within the linking length of a given particle. The
feature label of these neighbors are examined and updated, and the
neighbors whose labels are modified are appended to the search
queue for a revisit. The first description of the friends-of-friends
algorithm with breadth-first-search in the context of astrophysics
following this paradigm is by Geller and Huchra (1983). A popular
implementation is by Nbody-Shop (b), and more recently by Koda
et al. (2016). A naive BFS algorithm queries perform neighbor
queries on a point for multiple times, which is a target for opti-
mization. For example, Kwon et al. (2010) reduce the number of
queries by skipping visited branches of the tree.

Another widely used algorithm creates the friends-of-friends
features by hierarchical merging (e.g. Springel, 2005). This was
originally used for parallelization on large distributed computer
architectures, as it allows a very large concurrency with a simple
decomposition of the problem onto spatially disjoint domains.
The algorithm is implemented in the popular simulation soft-
ware GADGET,' but probably existed long before. It has been
adopted in many codes, including a publicly available version in
the AMR code ENZO (Bryan et al., 2014). To improve upon spatial
queries, GADGET incrementally increase the linking length with

1 Though not available in the public version.

http://dx.doi.org/10.1016/j.ascom.2017.05.004
http://www.elsevier.com/locate/ascom
http://www.elsevier.com/locate/ascom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ascom.2017.05.004&domain=pdf
mailto:yfeng1@berkeley.edu
mailto:modichirag@berkeley.edu
http://dx.doi.org/10.1016/j.ascom.2017.05.004

Y. Feng, C. Modi / Astronomy and Computing 20 (2017) 44-51 45

multiple iterations. During each iteration, the algorithm performs
a neighbor query on a selected set of points, and merges the
proto-features(proto-clusters) hosting these points by updating
the labels of all constituent points of these two proto-features. The
iterations are repeated till no additional merging is possible, and as
a result, multiple neighbor queries on a data point are performed.

In the GADGET implementation, the proto-features are main-
tained as a forest of threaded trees, where the leaves (points) of
any tree are connected by a linked list (hence the name threaded).
During a merge operation, two link lists are joined, by traversing
to the tail of the shorter linked list and connecting it to the head
of the longer linked list. Two additional storage spaces of O[N]
are required to keep track of the size of proto-features and the
threading linked list. The traverse increases the cost to merge a
feature of length L to O[LlogL], which can be a factor of a few
more than optimal in terms of wall clock time. This short-coming
of a linked list representation is discussed in detail in Section 21
of Cormen et al. (2009).

Due to these multiple iterations of the data, each making many
expensive spatial queries (that slows down significantly as over-
density grows) required in the existing algorithms, FOF has been
generally considered a slow algorithm. As a result, algorithms that
leads to an exact solution are rarely discussed in any detail in the
literature of cosmology and astrophysics, while numerous approx-
imated FOFs have been proposed as better alternatives to trade the
speed with accuracy, some with more desirable physical characters
(e.g. avoid bridging — counting nearby halos as one). The general
idea of these approximated methods is that accurately tracking
the outskirts of halos (features) is not important as it is already
dominated by shot-noise in the numerical scheme of solvers. A
few examples are improving the speed by using density informa-
tion (Eisenstein and Hut, 1998), stochastic sub-sampling (Liu et
al., 2008), and a relaxed linking length (Nbody-Shop, a).

Conceptually the FOF problem of cosmology is the same as a
well known problem of computer science — that of identifying the
maximum connected components (MCC) from a graph, where the
graph is induced from the data set with an adjacent matrix

.. |o, Dist(i,j)> b
AL, J) = {1, Dist(i, j) < b,

where b is the linking length. Put differently, if there is a path
between two points, then they belong to the same feature, which
is represented by a disjoint set. This problem is well studied and
has a wide range of applications beyond the field of astrophysics.
Numerous example implementations are freely available and in-
tegrated into machine learning packages (e.g. Shun and Blelloch,
2013).

In this paper we apply well known data structures and algo-
rithms from computer science to derive a fast exact friends-of-
friends algorithm that avoids expensive neighbor queries, uses
minimal memory overhead, and rejects over-density slow down.

Our main inspiration is from the dual-tree algorithm introduced
by Moore et al. (2001). The dual-tree algorithm efficiently cal-
culates correlation functions by walking two spatial index trees
simultaneously and avoids expensive and unnecessary neighbor
queries. We use KD-Tree in the example implementation, though
this can be replaced with a ball-tree for higher dimensional data
and a chaining mesh for low dimensional data to achieve better
performance (for the latter, see Sinha, 2016). Most importantly,
the dual-tree algorithm calculates the correlation function with a
single pass, enumerating each pair of neighboring points exactly
once. Rewriting the FOF algorithm with pair enumeration avoids
the repeated neighbor queries in breadth-first-search (BFS) algo-
rithms and the GADGET hierarchical algorithm.

The main issue in the hierarchical merging algorithm, as
pointed above, is the costly hierarchical merging of proto-features.

We address this by representing the proto-features with a
tree/forest data structure, and apply a splay operation in the merge
procedure, which moves recently accessed nodes closer to the root,
accelerating root finding operations in the average case (Cormen et
al., 2009, Section 21). The splay operation was original introduced
by Sleator and Tarjan (1985) to balance binary tree structures. In
our case, splay reduces the average case complexity to construct
final features of length L to O[L] (as compared to O[LlogL] with a
linked list, as implemented in GADGET). It also eliminates the need
to use additional O[N] storage space for threading and balancing,
resulting an extremely simple implementation. For completeness,
we give an intuitive proof of finding correct solution with a single
pass of pair enumeration with the splay tree data structure.

To further speed up our algorithm, especially in case of heavily
over dense region where spatial queries become increasingly ex-
pensive (scaling as O[((1 + &)b®)?] where b is the linking length
and § is the over density), we implement another important op-
timization. We show that if two KD-Tree nodes (proto-features)
are known to be fully-connected, the nodes need not be further
opened and their respective hosting proto-features can be directly
merged. This optimization eliminates most of merge operations
in dense region and is particularly relevant in high resolution
simulations that resolves kpc scale structures and over-density
peaks of § > 10% (if we push high resolution simulations such
as Hopkins et al., 2014, to a cosmological volume), though even for
current generation of simulations it already reduces the number of
merge operations by 20% to 50%.

The algorithm can be directly applied as the local section of a
parallel friend of friend halo finding routine. Our implementation
of the algorithm is available at https://github.com/rainwoodman/
kdcount/blob/master/kdcount/kd_fof.c. We note that our reference
dual tree pair enumeration code is not particularly optimized for
performance, and hence we rather focus on the theoretical aspects
of the algorithm and optimizations in this work. One can easily
re-implement our algorithms with existing highly optimized fast
correlation function codes to further improve the performance of
FOF halo identification on actually problems.

The paper is organized as the following: in Section 2, we de-
fine the plain dual-tree friends-for-friends algorithm and prove
its correctness; in Section 3, we will discuss the optimization; in
Section 4, we perform scaling tests of the algorithm on two realistic
cosmological simulation data sets.

2. Dual tree friends-of-friends algorithm

In this section, we describe our main algorithm, which is based
on walking simultaneously two KD-trees that spatially indexes the
data set being analyzed.

Definition 1. We define a KD-Tree with M nodes as a tuple of
(L[O : M], R[O : M], P[0 : M]), where L[m] is the left child of m,
R[m] is the right child of m, and P[m] is the list of points contained
by m. We follow the convention that 0-th node is the root node.
Several operations are also defined:

e Dist(i, j) = distance between ith and jth point in the dataset.
Every time a pair of points are enumerated a Dist(i, j) opera-
tion is performed.

e MinDist(m, n)/MaxDist(m, n), the minimal/maximal distance
of pairs between mth and nth node;

e MinDistB(m, n)/[MaxDistB(m, n), the bounds of minimal/
maximal distance between mth and nth node.

The bounds are quickly computed from the bounding geometry
of the KDTree nodes, as in a pair counting algorithm. We use the
bound properties

MinDistB(m, n) < MinDist(m, n)

https://github.com/rainwoodman/kdcount/blob/master/kdcount/kd%5Ffof.c
https://github.com/rainwoodman/kdcount/blob/master/kdcount/kd%5Ffof.c
https://github.com/rainwoodman/kdcount/blob/master/kdcount/kd%5Ffof.c

ISIf)rticles el Y 20 6La5 s 3l OISl ¥
Olpl (pawasd DYl gz 5o Ve 00 Az 5 ddes 36kl Ol ¥/
auass daz 3 Gl Gy V

Wi Ol3a 9 £aoge o I rals 9oy T 55 g OISl V/

s ,a Jol domieo ¥ O, 55l 0lsel v/

ol guae sla oLl Al b ,mml csls p oKl V7

N s ls 5l e i (560 sglils V7

Sl 5,:K8) Kiadigh o Sl (5300 0,00 b 25 ol Sleiiy ¥/

https://isiarticles.com/article/150365

