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a b s t r a c t 

In this paper, we propose a fast and effective neural network algorithm to perform singular value de- 

composition (SVD) of a cross-covariance matrix between two high-dimensional data streams. Firstly, we 

derive a dynamical system from a newly proposed information criterion. This system exhibits a single 

stable stationary point if and only if the weight matrices of the left and right neural networks span the 

left and right principal singular subspace of a cross-covariance matrix, respectively, and the other sta- 

tionary points are (unstable) saddle points. Then, a principal singular subspace (PSS) tracking algorithm 

is obtained from the dynamical system. Moreover, convergence analysis shows that the proposed algo- 

rithm converges to a stationary point that relates to the principal singular values. Thus, compared with 

traditional algorithms who can only track the PSS, the proposed algorithm can not only track the PSS but 

also estimate all of the corresponding principal singular values based on the extracted subspace. Finally, 

numerical simulations and practical application are carried to further demonstrate the efficiency of the 

proposed algorithm. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Principal component analysis (PCA) is a well-known statistical 

criterion that has been used for many years, typically in feature 

extraction and data compression applications [1–3] . This criterion 

turned out to be closely related to the learning rule proposed half 

a century ago by Anderson [4] for the self-organization of neural 

network. In 1982, Oja [5] showed that a single linear unit trained 

with a normalized version of the Hebbian rule asymptotically ex- 

tracts the principal component of the input sequence. In the wake 

of the important initial contributions by Oja, a plethora of neural 

network learning rules for principal component analysis (PCA) have 

been developed (see e.g. [6] ). 

Besides PCA method, many signal-processing tasks can also ef- 

ficiently be achieved by singular value decomposition (SVD) of a 

nonsquared matrix [7] , such as pattern recognition [8] and face 

recognition [9] . In the signal processing field of SVD, the first prob- 

lem is how to get the SVD of a priori known nonsquared ma- 

trix. To solve this problem, early methods which can get the exact 

or approximate SVD of a nonsquared matrix have been proposed 

based on matrix algebra [10–13] . These batch-processing meth- 

ods are robust, however, they are inefficient and cannot be used 

for real-time processing. The second problem is how to extract 
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features of a cross-covariance matrix between two vector se- 

quences on-line. These algorithms can avoid the computation of 

the cross-covariance matrix and instead directly work on the 

data samples. This is advantageous especially for high-dimensional 

data where the cross-covariance matrices would consume a large 

amount of memory and their update would be computationally 

expensive [14] . For on-line SVD, some neural network algorithms 

such as [15–19] were proposed based on Hebbian rule. These neu- 

ral networks can also obtain SVD of a rectangular matrix, if and 

only if their weight matrix is taken as A 

T A or AA 

T . However, if the 

data matrix is ill-conditioned, then the operation A 

T A or AA 

T usu- 

ally is numerically unstable and should be avoided [20] . The third 

problem is how to improve the stability and availability of algo- 

rithms. To solve this problem, some gradient-based algorithm such 

as [21–25] were proposed. However, convergence of the gradient- 

based algorithms always depend on the appropriate selection of 

the learning rate, but it is difficult to be determined in advance 

because the learning rate are directly related to the underlying 

matrix. Moreover, these algorithms can only extract the principal 

cross correlation feature according to the largest singular value. 

In fact, multiple principal singular vectors or PSS are important in 

some situations. Thus, the fourth problem is how to extract multi- 

ple principal singular vectors or track PSS of two vector sequences. 

Until now, subspace tracking methods have been widely used in 

many practical applications, such as spectral clustering [26] , au- 

thentic samples recovering [27] and subspace segmentation [28] . 

In the respect of PSS tracking problem, some sequential or parallel 
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algorithms such as [29–33] were proposed. It is found that most of 

the aforementioned algorithms can only extract principal singular 

vector(s) or track PSS. However, the singular values which are also 

very useful in some engineering practice have been ignored. To ad- 

dress this issue, Hassan [30] derived an interesting algorithm for 

PSS tracking in which all principal singular values can also be es- 

timated. But as pointed out [14] , the straight-forward formulation 

of a stochastic online algorithm for Hassans algorithm is infeasi- 

ble due to the matrix inversion involved in the equations. In [14] , 

an interesting algorithm, which is actually a coupled SVD algo- 

rithm, was proposed. In this coupled algorithm, the singular value 

is estimated alongside the singular vectors. In [34] , another cou- 

pled SVD algorithm was also proposed. However, these two algo- 

rithms are only available for single component analysis, and mul- 

tiple component analysis can only be achieved by sequential ex- 

traction method. The objective of this paper is to propose a fast 

and effective PSS tracking algorithm, which can also extract all of 

the principal singular values and does not involve matrix inversion 

computation. 

In this paper, based on a novel information criterion, we first 

propose a novel dynamical system which exhibits a single stable 

stationary point attained if and only if the weight matrices of the 

left and right neural network span the left and right principal sin- 

gular subspace of a cross-covariance matrix, respectively. Then, we 

obtain an effective online gradient-based algorithm for PSS track- 

ing from the dynamical system. Moreover, all principal singular 

values of the PSS can be estimated in a parallel way based on the 

extracted subspace. Compared with traditional methods, the pro- 

posed algorithm can not only track the PSS but also estimate all of 

the corresponding principal singular values. Compared with Kaiser 

et al. [14] algorithm, the proposed algorithm can extract multiple 

principal singular triplets (singular value and singular vectors) in a 

parallel way. Compared with Hasan’s [30] algorithm, the proposed 

algorithm does not involve matrix inversion computation. Exper- 

iment results show that the proposed algorithm performs better 

than existing algorithms in terms of convergence speed, orthogo- 

nality deviation and numerical stability. 

2. Preliminary 

Considering an m -dimensional sequence x ( k ) and an n - 

dimensional sequence y ( k ) with sampling number k large enough. 

If x ( k ) and y ( k ) are jointly stationary, then their cross-covariance 

matrix A = E[ xy T ] can be estimated by 

A (k ) = 

1 

k 

k ∑ 

j=1 

x ( j) y T ( j) ∈ R 

m ×n . (1) 

If x ( k ) and y ( k ) are jointly nonstationary and even slowly time- 

varying, then their cross-covariance matrix can be estimated by 

A (k ) = 

k ∑ 

j=1 

αk − j x ( j ) y T ( j ) ∈ R 

m ×n , (2) 

where 0 < α < 1 denotes the forgetting factor which makes the 

past data samples be less weighted than the recent ones. 

The SVD of a real matrix A is given by Kaiser et al. [14] 

A = Ū ̄S ̄V 

T + Ū 2 ̄S 2 ̄V 

T 

2 , (3) 

where Ū = [ ̄u 1 , . . . , ̄u M 

] ∈ R 

m ×M and V̄ = [ ̄v 1 . . . , ̄v M 

] ∈ R 

n ×M de- 

notes the left and right PSS that containing the left and right 

principal singular vectors, respectively, and S̄ = diag (σ1 . . . , σM 

) ∈ 

R 

M×M denotes the matrix with the principal singular values on its 

diagonal of A . Here we refer to these matrices as the principal por- 

tion of the SVD. Thus, ˆ A = Ū ̄S ̄V 

T 
is the best rank- M approxima- 

tion (in the least-squares sense) of A , where M ≤ p = min { m, n } . 

Moreover, ( ̄u j , ̄v j , σ j ) is called the j th singular triplet of the cross- 

covariance matrix A . Furthermore, Ū 2 = [ ̄u M+1 , . . . , ̄u p ] ∈ R 

m ×(p−M) , 

S̄ 2 = diag (σM+1 , . . . , σp ) ∈ R 

(p−M) ×(p−M) and V̄ 2 = [ ̄v M+1 , . . . , ̄v p ] ∈ 

R 

n ×(p−M) correspond to the minor portion of the SVD. Ū , V̄ , Ū 2 , 

V̄ 2 are orthogonal, i.e., Ū 

T 
Ū = V̄ 

T 
V̄ = I M 

and Ū 

T 
2 ̄U 2 = V̄ 

T 
2 ̄V 2 = I p−M 

. 

Moreover, we assume that the singular values are ordered and 

mutually different with respect to their absolute value such that 

| σ1 | > · · · > | σM 

| > | σM+1 | > · · · > | σp | . In the following, all consid- 

erations (e.g., concerning fixed points) depend on the principal 

portion of the SVD in the domain { ( ̄U , V̄ ) | ̄U 

T 
A ̄V > 0 } only, thus σ j 

> 0 ∀ j ≤ p . 

3. Novel information criterion and algorithm 

For a cross-covariance matrix A = E[ xy T ] ∈ R 

m ×n , and given U ∈ 

R 

m ×r and V ∈ R 

n ×r in the domain {( U , V )| U 

T AV > 0}, we present a 

novel information criterion for PSS tracking of A as follows: 

min 

{ 

J( U , V ) 
} 

J( U , V ) = − 1 

2 

tr ( U 

T AV D ) − tr 

(
U 

T AV 

‖ U ‖‖ V ‖ 

)
+ 

1 

2 

tr ( U 

T U + V 

T V ) , 

(4) 

where D is a diagonal matrix whose eigenvalues are all positive. 

Based on the gradient of J ( U , V ) respect to U and V , we can 

obtain a dynamical system as 

˙ U = AV D + 

AV 

‖ U ‖‖ V ‖ 

− U U 

T AV 

‖ U ‖ 

3 ‖ V ‖ 

− U (5) 

˙ V = A 

T U D + 

A 

T U 

‖ U ‖‖ V ‖ 

− V U 

T AV 

‖ U ‖‖ V ‖ 

3 
− V . (6) 

Clearly, we can obtain an adaptive algorithm with normalized 

steps from the above dynamical system as 

˜ U (k + 1) = U (k ) + η
{ 

A (k + 1) V (k )( D + I r ) 

‖ U (k ) ‖‖ V (k ) ‖ 

−U (k ) 
[ 

U 

T (k ) A (k + 1) V (k ) 

‖ U ( k ) ‖ 

3 ‖ V ( k ) ‖ 

+ I r 

] } 

(7) 

U (k + 1) = 

˜ U (k + 1) 

‖ U (k + 1) ‖ 

(8) 

˜ V (k + 1) = V (k ) + η
{ 

A 

T (k + 1) U (k )( D + I r ) 

‖ U (k ) ‖‖ V (k ) ‖ 

−V (k ) 
[ 

U 

T (k ) A (k + 1) V (k ) 

‖ U ( k ) ‖‖ V ( k ) ‖ 

3 
+ I r 

] } 

(9) 

V (k + 1) = 

˜ V (k + 1) 

‖ V (k + 1) ‖ 

, (10) 

where k is the time step, and η is the learning rate. If x and y are 

stationary, then A is updated by 

A (k + 1) = 

k 

k + 1 

A (k ) + 

1 

k + 1 

x (k + 1) y T (k + 1) . (11) 

If x and y are nonstationary, then A is updated by 

A (k + 1) = αA (k ) + x (k + 1) y T (k + 1) . (12) 

Note that in the above algorithm two normalized steps (8) and 

(10) are added to ensure convergence. Since U ( k ) and V ( k ) are 

normalized at each step, we have ‖ U (k ) ‖ = ‖ V (k ) ‖ = 1 , ∀ k > 0 . 

Substituting ‖ U (k ) ‖ = ‖ V (k ) ‖ = 1 into (7) –(9) and ignoring the 

normalize step, it yields 
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