
Please cite this article in press as: S. Artamonov, M. Babenko, A fast scaling algorithm for the weighted triangle-free 2-
matching problem, European Journal of Combinatorics (2017), http://dx.doi.org/10.1016/j.ejc.2017.07.008.

European Journal of Combinatorics ( ) –

Contents lists available at ScienceDirect

European Journal of Combinatorics

journal homepage: www.elsevier.com/locate/ejc

A fast scaling algorithm for the weighted
triangle-free 2-matching problem✩

S. Artamonov a, M. Babenko b

a Moscow State University, Russian Federation
b National Research University Higher School of Economics (HSE), Russian Federation

a r t i c l e i n f o

Article history:
Available online xxxx

a b s t r a c t

A perfect 2-matching in an undirected graphG = (V , E) is a function
x : E → {0, 1, 2} such that for each node v ∈ V the sum of
values x(e) on all edges e incident to v equals 2. If supp(x) =

{e ∈ E | x(e) ̸= 0} contains no triangles then x is called triangle-free.
Polyhedrally speaking, triangle-free 2-matchings are harder

than 2-matchings, but easier than usual 1-matchings.
Given edge costs c : E → R+, a natural combinatorial problem

consists in finding a perfect triangle-free matching of minimum
total cost. For this problem, Cornuéjols and Pulleyblank devised a
combinatorial strongly-polynomial algorithm,which can be imple-
mented to run in O(VE log V ) time. (Here we write V , E to indicate
their cardinalities |V |, |E|.)

If edge costs are integers in range [0, C] then for both 1-
and 2-matchings some faster scaling algorithms are known that
find optimal solutions within O(

√
Vα(E, V ) log VE log(VC)) and

O(
√
VE log(VC)) time, respectively, where α denotes the inverse

Ackermann function. So far, no efficient cost-scaling algorithm is
known for finding aminimum-cost perfect triangle-free 2-matching.
The present paper fills this gap by presenting such an algorithm
with time complexity of O(

√
VE log V log(VC)).
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1. Introduction

1.1. Basic notation and definitions

We shall use some standard graph-theoretic notation throughout the paper. For an undirected
graph G, we denote its sets of vertices and edges by V (G) and E(G), respectively. Unless stated
otherwise, we allow parallel edges and loops in graphs. A subgraph of G induced by a subset U ⊆ V (G)
is denoted by G[U]. For U ⊆ V (G), the set of edges with one end in U and the other in V (G) − U is
denoted by δG(U); for U = {u}, the latter notation is shortened to δG(u). Also, γG(U) denotes the set of
edges with both endpoints in U . When G is clear from the context, it is omitted from notation.

For a path P = v0e0v1e1 . . . vkekvk+1 viewed as an alternating sequence of vertices and edges, we
denote its reverse by P = vk+1ekvk . . . e1v1e0v0; for two paths P1, P2 such that the last vertex of P1
matches the first vertex of P2, P1 ◦ P2 stands for their concatenation. For an arbitrary set W and a
function f : W → R, we denote its support set by supp(f ) = {w ∈ W | f (w) ̸= 0}. For an arbitrary
subsetW ′

⊆ W , we write f (W ′) to denote
∑

w∈W ′ f (w).
The following objects will be of primary interest throughout the paper:

Definition 1. Given an undirected graph G, a 2-matching in G is a function x : E(G) → {0, 1, 2} such
that x(δ(v)) ≤ 2 for all v ∈ V (G). If x(δ(v)) = 2 for all v ∈ V (G) then x is called perfect. A vertex v is
called free from x if x(δ(v)) = 0. If supp(x) contains no triangles then x is called triangle-free.

Consider some non-negative real valued edge costs c : E(G) → R+. Then a natural combinatorial
problem consists in finding a perfect triangle-free 2-matching x of minimum total cost c · x. For this
problem, Cornuéjols and Pulleyblank [3] devised a combinatorial polynomial algorithm. While they
were not aiming for the best time bound, it is not difficult to implement their algorithm to run in
O(VE log V ) time (hereinafter in complexity bounds we identify sets with their cardinalities).

1.2. Related work and our contribution

Now let edge costs be integers in [0, C]. The problem of finding a perfect triangle-free 2-matching
of minimum cost is closely related to other problems in matching theory, for which some faster cost-
scaling algorithms are known.

First, we may allow triangles in supp(x) and ask for a perfect 2-matching of minimum cost. This
problem is trivially reducible to minimum cost perfect bipartite matching. (Indeed, we create two
vertices v1, v2 for each vertex v and add two edges e1 = {u1, v2}, e2 = {u2, v1} with c(e1) =

c(e2) = c(e) for each edge e = {u, v}.) A classical algorithm [7] based on cost scaling and blocking
augmentations solves this problem in O(

√
VE log(VC)) time.

Second, in Definition 1 we may replace x(δ(v)) ≤ 2 by x(δ(v)) ≤ 1 and get the usual notion of 1-
matchings. For general graphs G, a sophisticated algorithm from [8] solves the minimum-cost perfect
matching problem within O(

√
Vα(E, V ) log VE log(VC)) time.

For a related but somewhat harder case of simple triangle-free 2-matchings (where x is only
allowed to take values 0 and 1), a good survey was done by Kobayashi [12].

Some relevant prior art also exists for the unweighted case, where the goal is to find a matching
with maximum size x(E(G)). For unweighted 2-matchings (or, equivalently, 1-matchings in bipartite
graphs), Hopcroft and Karp devised an O(

√
VE) time algorithm [11] (by use of clique compression, the

latter boundwas improved toO(
√
VE logV (V 2/E)) in [6]). Later, a conceptually similar butmuchmore

involved O(
√
VE)-time algorithm [13] for matchings in general graphs was devised (and its running

time was similarly improved to O(
√
VE logV (V 2/E)) in [9]).

Concerning unweighted triangle-free 2-matchings, Cornuéjols and Pulleyblank [4] gave a natural
augmenting path algorithm; with a suitable implementation, its time complexity is O(VE). To match
the latterwith the complexity of 1- and 2-matchings, [2] proposed amethod that reduces the problem
to a pair of maximum 1-matching computations. Unfortunately, this approach does not seem to
extend to weighted problems.

Apart from the primal–dual algorithm given in [3], no other methods for solving the weighted
perfect triangle-free 2-matching problem are known. In particular, no efficient cost scaling algorithm
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