
Please cite this article in press as: S. Artamonov, M. Babenko, A fast scaling algorithm for the weighted triangle-free 2-
matching problem, European Journal of Combinatorics (2017), http://dx.doi.org/10.1016/j.ejc.2017.07.008.

European Journal of Combinatorics () –

Contents lists available at ScienceDirect

European Journal of Combinatorics

journal homepage: www.elsevier.com/locate/ejc

A fast scaling algorithm for the weighted
triangle-free 2-matching problem✩

S. Artamonov a, M. Babenko b

a Moscow State University, Russian Federation
b National Research University Higher School of Economics (HSE), Russian Federation

a r t i c l e i n f o

Article history:
Available online xxxx

a b s t r a c t

A perfect 2-matching in an undirected graphG = (V , E) is a function
x : E → {0, 1, 2} such that for each node v ∈ V the sum of
values x(e) on all edges e incident to v equals 2. If supp(x) =

{e ∈ E | x(e) ̸= 0} contains no triangles then x is called triangle-free.
Polyhedrally speaking, triangle-free 2-matchings are harder

than 2-matchings, but easier than usual 1-matchings.
Given edge costs c : E → R+, a natural combinatorial problem

consists in finding a perfect triangle-free matching of minimum
total cost. For this problem, Cornuéjols and Pulleyblank devised a
combinatorial strongly-polynomial algorithm,which can be imple-
mented to run in O(VE log V) time. (Here we write V , E to indicate
their cardinalities |V |, |E|.)

If edge costs are integers in range [0, C] then for both 1-
and 2-matchings some faster scaling algorithms are known that
find optimal solutions within O(

√
Vα(E, V) log VE log(VC)) and

O(
√
VE log(VC)) time, respectively, where α denotes the inverse

Ackermann function. So far, no efficient cost-scaling algorithm is
known for finding aminimum-cost perfect triangle-free 2-matching.
The present paper fills this gap by presenting such an algorithm
with time complexity of O(

√
VE log V log(VC)).

© 2017 Elsevier Ltd. All rights reserved.

✩ This is an extended version of a conference paper Artamonov and Babenko (2016) [1].
E-mail addresses: stiartamonov@gmail.com (S. Artamonov), maxim.babenko@gmail.com (M. Babenko).

http://dx.doi.org/10.1016/j.ejc.2017.07.008
0195-6698/© 2017 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.ejc.2017.07.008
http://www.elsevier.com/locate/ejc
http://www.elsevier.com/locate/ejc
mailto:stiartamonov@gmail.com
mailto:maxim.babenko@gmail.com
http://dx.doi.org/10.1016/j.ejc.2017.07.008

Please cite this article in press as: S. Artamonov, M. Babenko, A fast scaling algorithm for the weighted triangle-free 2-
matching problem, European Journal of Combinatorics (2017), http://dx.doi.org/10.1016/j.ejc.2017.07.008.

2 S. Artamonov, M. Babenko / European Journal of Combinatorics () –

1. Introduction

1.1. Basic notation and definitions

We shall use some standard graph-theoretic notation throughout the paper. For an undirected
graph G, we denote its sets of vertices and edges by V (G) and E(G), respectively. Unless stated
otherwise, we allow parallel edges and loops in graphs. A subgraph of G induced by a subset U ⊆ V (G)
is denoted by G[U]. For U ⊆ V (G), the set of edges with one end in U and the other in V (G) − U is
denoted by δG(U); for U = {u}, the latter notation is shortened to δG(u). Also, γG(U) denotes the set of
edges with both endpoints in U . When G is clear from the context, it is omitted from notation.

For a path P = v0e0v1e1 . . . vkekvk+1 viewed as an alternating sequence of vertices and edges, we
denote its reverse by P = vk+1ekvk . . . e1v1e0v0; for two paths P1, P2 such that the last vertex of P1
matches the first vertex of P2, P1 ◦ P2 stands for their concatenation. For an arbitrary set W and a
function f : W → R, we denote its support set by supp(f) = {w ∈ W | f (w) ̸= 0}. For an arbitrary
subsetW ′

⊆ W , we write f (W ′) to denote
∑

w∈W ′ f (w).
The following objects will be of primary interest throughout the paper:

Definition 1. Given an undirected graph G, a 2-matching in G is a function x : E(G) → {0, 1, 2} such
that x(δ(v)) ≤ 2 for all v ∈ V (G). If x(δ(v)) = 2 for all v ∈ V (G) then x is called perfect. A vertex v is
called free from x if x(δ(v)) = 0. If supp(x) contains no triangles then x is called triangle-free.

Consider some non-negative real valued edge costs c : E(G) → R+. Then a natural combinatorial
problem consists in finding a perfect triangle-free 2-matching x of minimum total cost c · x. For this
problem, Cornuéjols and Pulleyblank [3] devised a combinatorial polynomial algorithm. While they
were not aiming for the best time bound, it is not difficult to implement their algorithm to run in
O(VE log V) time (hereinafter in complexity bounds we identify sets with their cardinalities).

1.2. Related work and our contribution

Now let edge costs be integers in [0, C]. The problem of finding a perfect triangle-free 2-matching
of minimum cost is closely related to other problems in matching theory, for which some faster cost-
scaling algorithms are known.

First, we may allow triangles in supp(x) and ask for a perfect 2-matching of minimum cost. This
problem is trivially reducible to minimum cost perfect bipartite matching. (Indeed, we create two
vertices v1, v2 for each vertex v and add two edges e1 = {u1, v2}, e2 = {u2, v1} with c(e1) =

c(e2) = c(e) for each edge e = {u, v}.) A classical algorithm [7] based on cost scaling and blocking
augmentations solves this problem in O(

√
VE log(VC)) time.

Second, in Definition 1 we may replace x(δ(v)) ≤ 2 by x(δ(v)) ≤ 1 and get the usual notion of 1-
matchings. For general graphs G, a sophisticated algorithm from [8] solves the minimum-cost perfect
matching problem within O(

√
Vα(E, V) log VE log(VC)) time.

For a related but somewhat harder case of simple triangle-free 2-matchings (where x is only
allowed to take values 0 and 1), a good survey was done by Kobayashi [12].

Some relevant prior art also exists for the unweighted case, where the goal is to find a matching
with maximum size x(E(G)). For unweighted 2-matchings (or, equivalently, 1-matchings in bipartite
graphs), Hopcroft and Karp devised an O(

√
VE) time algorithm [11] (by use of clique compression, the

latter boundwas improved toO(
√
VE logV (V 2/E)) in [6]). Later, a conceptually similar butmuchmore

involved O(
√
VE)-time algorithm [13] for matchings in general graphs was devised (and its running

time was similarly improved to O(
√
VE logV (V 2/E)) in [9]).

Concerning unweighted triangle-free 2-matchings, Cornuéjols and Pulleyblank [4] gave a natural
augmenting path algorithm; with a suitable implementation, its time complexity is O(VE). To match
the latterwith the complexity of 1- and 2-matchings, [2] proposed amethod that reduces the problem
to a pair of maximum 1-matching computations. Unfortunately, this approach does not seem to
extend to weighted problems.

Apart from the primal–dual algorithm given in [3], no other methods for solving the weighted
perfect triangle-free 2-matching problem are known. In particular, no efficient cost scaling algorithm

https://isiarticles.com/article/150403

