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Sparse frequency waveform (SFW) is widely used in wideband systems (for instance, radar and 
communication systems) to suppress the narrowband interferences or avoid the reserved frequency 
bands. However, it suffers high autocorrelation sidelobes due to the discontinuous spectrum. In this 
paper, we aim at designing waveforms with low autocorrelation sidelobes and arbitrary frequency 
stopbands. After formulating this design as an unconstrained minimization problem, two algorithms 
based on the majorization–minimization method and a gradient-based algorithm are derived to deal 
with this problem. The proposed algorithms can be easily implemented by the fast Fourier transform 
(FFT) operations and thus are computationally efficient for long waveform design with good sidelobe and 
stopband suppression. In addition, they can handle both the design problem of low sidelobe waveform 
and the design problem of sparse frequency waveform with low sidelobes. Numerical experiments show 
that the proposed algorithms can provide better performance than the existing ones on the running time.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

With the rapid development of the electronic technology, the 
competition of spectrum resources is becoming more and more 
fierce, thus the radar and communication systems have to work 
in the same congested frequency bands [1]. The result of spectral 
cohabitation is that the systems which share the frequency band 
are confronted with the narrowband interference problem [2]. An 
efficient way to overcome this problem is to design the sparse fre-
quency waveform (SFW) which can improve the quality of wireless 
service and the detection capability of radar.

SFW is a kind of waveform with several discontinuous fre-
quency stopbands. It has a wide range applications in ultra-wide 
bandwidth (UWB) systems [3,4], high frequency surface wave radar 
(HFSWR) [5–8] and cognitive radar [9]. In 2004, [10] applied the 
steepest descent (SD) method to design the sparse frequency trans-
mit waveform, and proposed a mismatch filter to suppress the 
range sidelobes. Although [10] can achieve arbitrary frequency 
suppression, the transmit-receive waveform design method was 
time consuming, and would cause the loss of signal to noise ratio 
(SNR). To avoid the loss of SNR, the cyclic iteration [11] and the La-
grange programming neural network (LPNN) [12] were proposed to 
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design waveforms with desired spectrum shapes. However, with-
out considering the sidelobe constraint, the designed waveforms 
suffer the high range sidelobes, which is not desired in many ap-
plications [13–15].

In addition to the sparse frequency property, low autocorrela-
tion sidelobes is also a good property of the waveform [16]. In re-
cent years, the design of waveform with low autocorrelation side-
lobes has attracted lots of attentions [17–24]. The main research 
can be divided into three categories: the design of low integrated 
sidelobe level (ISL) waveform [17–20], the design of low weighted 
ISL (WISL) waveform [19,21–23] and the design of low peak side-
lobe level (PSL) waveform [21,24]. To design waveform with good 
correlation property, many efficient algorithms based on the fast 
Fourier transform (FFT) operations were developed, for instance 
the CAN (cyclic algorithm new) [19], WMISL-Diag-acc (monotonic 
minimizer for weighted ISL) [21] and DPM (discrete phase method) 
[24].

In order to suppress both the frequency stopbands and the 
sidelobes, many scholars were devoted to design SFW with low 
autocorrelation sidelobes [6,7,25,26]. Actually, the design of such 
waveform can be regarded as a bi-objective optimization (also 
known as Pareto optimization) problem due to the simultaneous 
consideration of two constraints. To solve the bi-objective prob-
lem, the scalarization procedure was applied to obtain a single-
objective optimization problem which can be easily handled by 
many optimization methods. At the early stage, the genetic algo-
rithm (GA) [6] and particle swarm optimization (PSO) algorithm 
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[7] were applied to tackle this problem. However, the convergence 
speeds of these algorithms are slow. To improve the computational 
efficiency, the cyclic algorithms named SCAN (stopband cyclic al-
gorithm new) and WeSCAN (weighted SCAN) were proposed in 
[25]. Compared to the SCAN, the WeSCAN required more compu-
tations but is more flexible in waveform design. Meanwhile, [26]
proposed a new cyclic algorithm (which we call SD-based cyclic 
algorithm, i.e., SDCA) that incorporates the SD method. However, 
the shortcoming of the SDCA is that the computation of the it-
eration step along the gradient direction is still complicated and 
costly. In addition, there are some other aspects of research on 
the sparse frequency waveform design [27–30]. In [27–29], the 
trade-off among the signal to interference plus noise ratio (SINR), 
spectral shape and the autocorrelation sidelobes of the waveform 
was studied, while [30] carried out the sparse frequency waveform 
analysis and design by using the ambiguity function theory.

Although there are some literatures on the SFW design, the 
computational complexity of the existing algorithms are so intol-
erable that the waveform online design in the dynamic electro-
magnetic environment is difficult to achieve. In this paper, we 
deal with the problem of designing SFW with low autocorrela-
tion sidelobes. According to the WISL metric and the power spec-
trum density (PSD), a new objective function is established in 
the frequency domain via the scalarization procedure. By apply-
ing the majorization–minimization (MM) method three times, the 
majorization-based iterative algorithm (MIA) is developed. Due to 
the nature of the majorization function, the convergence speed of 
the MIA is slow. Thus, an acceleration scheme is applied to accel-
erate the MIA, and then we obtain the resulting accelerated MIA 
(AMIA). The majorization process analysis is then carried out. To 
further improve the convergence speed, the gradient-based itera-
tive algorithm (GIA) is derived by minimizing the objective func-
tion directly. In GIA, the searching step size which is hard to cal-
culate directly is deduced via the Taylor series expansion. Different 
from the existing algorithms, both the AMIA and the GIA can be 
implemented by the fast Fourier transform (FFT) operations, and 
have high computational efficiency.

The rest of the paper is organized as follows. In Section 2, 
the problem of designing SFW with sidelobe constraint is formu-
lated. In Section 3, MIA and AMIA are developed based on the 
MM method, followed by the majorization process analysis. In Sec-
tion 4, we develop the GIA by deducing the phase gradient and 
the step size, and then give a brief analysis of complexity. Section 5
provides some numerical experiments to verify the effectiveness of 
the proposed algorithms. Finally, Section 6 gives the conclusions.

Notation: Boldface upper case letters denote matrices while 
boldface lower case letters denote column vectors. The com-
plex conjugate, transpose and conjugate transpose are denoted 
by (·)∗, (·)T , (·)H , respectively. ‖·‖ and ‖·‖F denote the Euclidean 
norm of the vector and the Frobenius norm of the matrix. Re(·)
and Im(·) denote the real and imaginary part respectively. Diag(x)

denotes a diagonal matrix formed with the column vector x. ◦ de-
notes the Hadamard product. Tr(·) denotes the trace of a matrix. 
x(m) denotes the m-th element of the vector x. xk is the k-th it-
eration of x. X:,1:i denotes the submatrix formed with the first i
columns of X. x1:i denotes the first i elements of x. I denotes the 
identity matrix. 0N is the all-zero vector of length N . F(x) and 
F−1(x) denote the 2N-point FFT and IFFT (inverse FFT) operations 
of x respectively. In the (I)FFT operations, if the length of x is less 
than 2N , x is padded with trailing zeros to length 2N .

2. Problem formulation

As mentioned in introduction, this paper focuses on the prob-
lem of designing sparse frequency waveform with sidelobe con-
straint. Therefore, the waveform should satisfy two constraints: 

one is the sparse frequency constraint; and the other one is the 
sidelobe constraint. In the following, we first establish the corre-
sponding criterions of these two constraints, and then formulate 
the waveform design problem.

2.1. The sparse frequency constraint

Let {xn}N
n=1 be the complex waveform to be designed. The vec-

tor form of the waveform can be expressed as

x = [x1, x2, ..., xN ]T . (1)

Assume f is the 2N-point discrete Fourier transform (DFT) vector 
of the waveform {xn}N

n=1, i.e.,

f(m) =
N∑

n=1

xne− jnωm ,ωm = 2π

2N
m,m = 1, ...,2N, (2)

then the power spectrum density (PSD) vector p of x can be writ-
ten as

p = f ◦ f∗. (3)

Waveform with sparse frequency property means that the PSD 
of the waveform has several frequency stopbands. Without loss of 
generality, we consider the frequency is normalized. Define the set 
of frequency stopbands as

� f = ns∪
k=1

( fk1, fk2) ⊂ [0,1], (4)

where ( fk1, fk2) denotes one stopband, and ns denotes the num-
ber of the stopbands. Since the frequency of the PSD corresponds 
to the normalized frequency [0, 1], the suppression of the stop-
band � f is equivalent to minimizing the PSD vector p in following 
intervals

�̄ f = ns∪
k=1

(2N fk1,2N fk2) ⊂ [0,2N]. (5)

For example, assume that the stopband and waveform length are 
(0.2, 0.3) and 256, then the PSD which should be minimized is 
p(k), k ∈ [103, 153]. Define the frequency weight vector as

w f = [w̄1, w̄2, ..., w̄2N ]T ,

w̄ p =
{

1, p ∈ �̄ f
0, otherwise

.
(6)

Similar to the definition of the weighted integrated sidelobe level 
(WISL) [19,21], then the criterion of sparse frequency constraint 
can be formulated as

O P S D =
2N∑

k=1

w̄k|p(k)|2 = pH Diag(w f )p. (7)

Thus, by minimizing (7), the spectral power in � f can be sup-
pressed.

2.2. The sidelobe constraint

The commonly used criterion of the sidelobe suppression is the 
integrated sidelobe level (ISL) [17,19]:

ISL =
N−1∑
k=1

|rk|2, (8)

where rk denotes the aperiodic autocorrelation function (ACF) of 
the waveform which is defined as
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