Hydrogenation behaviour in rectangular metal hydride tanks under effective heat management processes for green building applications

Evangelos I. Gkanas, Martin Khzouz, Grigorios Panagakos, Thomas Statheros, Panagiota Mihalakakou, Gerasimos Siasios, Georgios Skodras, Sofoklis S. Makridis

PII: S0360-5442(17)31709-7
DOI: 10.1016/j.energy.2017.10.040
Reference: EGY 11684

To appear in: Energy

Received Date: 27 March 2017
Revised Date: 5 October 2017
Accepted Date: 9 October 2017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Hydrogenation behaviour in rectangular metal hydride tanks under effective heat management processes for green building applications

Evangelos I. Gkanas1*, Martin Khzouz1, Grigorios Panagakos2, Thomas Statheros1, Panagiota Mihalakakou3, Gerasimos Siasios1,3,4, Georgios Skodras4, Sofoklis S. Makridis3

1. Hydrogen for Mobility Lab, Centre for Mobility and Transport, Coventry University, Coventry University, Priory Street, Coventry, CV1 5FB, United Kingdom.
2. Environmental Research Laboratory, NCSR ‘Demokritos’, 15310 Athens, Greece
3. Department of Environmental and Natural Resources Management, University of Patras, 2 Seferi St. Agrinio, Greece
4. Novel & Clean Technologies Lab., Dept. of Mechanical Engineering, University of Western Macedonia, Mpakola & Sialvera, 501 00 Kozani, Greece

*Corresponding author email: evangelos.gkanas@coventry.ac.uk/egkanas@gmail.com

Abstract

A fully validated with solid experimental results numerical study regarding the hydrogenation process of rectangular metal hydride beds under effective internal heat management is presented and analysed. Three different geometries equipped with plain embedded heat management tubes are introduced and examined. For each geometry, five different values of metal hydride thickness are studied and additionally, the effect of the coolant flow is examined in terms of different values of heat transfer coefficient [W/m\(^2\)K]. To evaluate the effect of the heat management process, a variable named as Non-Dimensional Conductance (NDC) is analysed and studied. Furthermore, three different materials are introduced, two “conventional” AB\(_5\) intermetallics and a novel AB\(_2\)-based Laves phase intermetallic. According to the results, the optimum value for the metal hydride thickness was found to be 10.39 mm, while the optimum value for the heat transfer coefficient was 2000 [W/m\(^2\)K]. For the above optimum conditions, the performance of the novel AB\(_2\)-based Laves phase intermetallic showed the fastest hydrogenation kinetics compared to the other two AB\(_5\) intermetallics indicating that is a powerful storage material for stationary applications.

Keywords: Hydrogen Storage; Heat Management; Stationary Applications; Heat and Mass Transfer; Green Buildings;
امکان دانلود نسخه تمام متن مقالات انگلیسی
امکان دانلود نسخه ترجمه شده مقالات
پذیرش سفارش ترجمه تخصصی
امکان جستجو در آرشیو جامعی از صدها موضوع و هزاران مقاله
امکان دانلود رایگان ۲ صفحه اول هر مقاله
امکان پرداخت اینترنتی با کلیه کارت های عضو شتاب
دانلود فوری مقاله پس از پرداخت آنلاین
پشتیبانی کامل خرید با بهره مندی از سیستم هوشمند رهگیری سفارشات