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In this paper, we provide an algorithm for the factorization of skew 
polynomials over finite fields. It is faster than the previously known 
algorithm, which was due to Giesbrecht (1998). There are two main 
improvements. The first one is obtained through a careful study 
of the structure of the quotients of a skew polynomial ring, using 
theoretical results relating skew polynomial rings and Azumaya 
algebras. The second improvement is provided by giving faster sub-
algorithms for the arithmetic in skew polynomial rings, such as 
multiplication, division, and extended Euclidean division.

© 2016 Elsevier Ltd. All rights reserved.

0. Introduction

The aim of this paper is to design a new algorithm for factorization in rings of skew polynomials 
over finite fields. These noncommutative rings have been widely studied, including from an algorith-
mic point of view, since they were first introduced by Ore in 1933. Today, one important application 
for the study of skew polynomials over finite fields is related to some error-correcting codes intro-
duced in Gabidulin (1985).

The first significant results in terms of effective arithmetics in these rings, including an algorithm 
for factoring a skew polynomial as a product of irreducible elements, appear in Giesbrecht’s paper 
(Giesbrecht, 1998). In the present paper, we give a factorization algorithm whose complexity improves 
on Giesbrecht’s. We also describe various fast-multiplication algorithms for skew polynomials, and 
some additional algorithms such as Euclidean division and gcd.
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Let k be a finite field of characteristic p, and let σ be an automorphism of k. We denote by kσ

the subfield of k fixed by σ , and by q its cardinality. Let also r denote the order of σ on k; the 
extension k/kσ is then cyclic of degree r. The ring k[X, σ ] of skew polynomials with coefficients in k
is a noncommutative ring, on which multiplication is determined by X · a = σ(a) · X for all a ∈ k. As 
we will see in the first section, a skew polynomial can always be factored as a product of irreducible 
skew polynomials. However, such a factorization is not unique in general.

In the second section, we will study more carefully the structure of skew polynomial rings, by 
putting them in the framework of Azumaya algebras. The structure theorem we will rely on is the 
following:

Theorem. (Cf. Theorem 2.1.2, see also Ikehata, 1984, Theorem 2.) The ring k[X, σ ][1/X] is an Azumaya algebra 
over its centre kσ [Xr][1/Xr].

This Theorem appears in Ikehata (1984). We will give a relatively short proof of this result, which 
makes this paper self-contained.

This Theorem has many important consequences for our purpose. The first one is the existence 
of a reduced norm map k[X, σ ] → kσ [Xr], which turns out to have very nice properties related to 
factorizations. More precisely, we shall explain how it can be used to establish a close link between 
factorizations of a skew polynomial and basic linear algebra over finite extensions of kσ .

The third section of the paper deals with algorithmic aspects of arithmetic in skew polynomial 
rings. We start by giving various fast-multiplication algorithms and, as usual, we derive from them 
efficient algorithms to compute Euclidean division and gcd.

Then, we reach the core algorithm of this paper: the factorization algorithm, which is presented 
in the fourth section. Making an intensive use of the theory developed previously, we obtain a very 
efficient probabilistic algorithm to factor a skew polynomial as a product of irreducible skew polyno-
mials, SkewFactorization. Before stating our complexity theorem, we recall the soft-O notation: 
if un and vn are two sequences, the notation un = Õ (vn) means that there exists a positive integer k
such that un = O (vn logk vn).

Theorem. (Cf. Theorem 4.3.4.) The algorithm SkewFactorization factors a skew polynomial of degree d
in k[X, σ ] with average complexity

Õ (dr3 log q + d log2 q + d1+ε(log q)1+o(1)) + F (d,kσ )

bit operations, for all ε > 0. Here F (d, K ) denotes the complexity of the factorization of a (commutative) 
polynomial of degree d over the finite field K .

Remark 1. In the above Theorem, the computation model we use is the computation tree model (see 
Bürgisser et al., 1997, §4.4).

Remark 2. Let ω be an exponent strictly greater that 2 such that the complexity of the matrix 
multiplication is Õ (nω) for input matrices of size n × n. If we assume further that log q remains 
bounded, there is a variant of Theorem 4.3.4 stating that SkewFactorization runs with complex-
ity Õ (drω + d1+ε) + F (d, kσ ) bit operations. We note that this version, when it applies, is generally 
stronger (the factor r3 is replaced by rω).

Today, the best (average) complexity known for polynomial factorization, due to Kedlaya and 
Umans (2008) (improving a former algorithm by Kaltofen and Shoup, 1998), is:

F (d, K ) = (d3/2+o(1) + d1+o(1) log q) · (log q)1+o(1)

bit operations, where q is the cardinality of K . Assuming this value for F (d, K ), we see that the 
terms d log2 q and d1+ε(log q)1+o(1) are negligible compared to F (d, K ). If furthermore r3 � d, so is 
the term dr3 log q. With this extra assumption, the complexity of our algorithm is then comparable to 
the complexity of the factorization of a commutative polynomial of the same degree.



https://isiarticles.com/article/150444

