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a b s t r a c t

This paper proposes a fast decentralized algorithm for solving a consensus optimization problem
defined in a directed networked multi-agent system, where the local objective functions have the
smooth+nonsmooth composite form, and are possibly nonconvex. Examples of such problems include
decentralized compressed sensing and constrained quadratic programming problems, as well as many
decentralized regularization problems. We extend the existing algorithms PG-EXTRA and ExtraPush
to a new algorithm PG-ExtraPush for composite consensus optimization over a directed network. This
algorithm takes advantage of the proximity operator like in PG-EXTRA to deal with the nonsmooth term,
and employs the push-sum protocol like in ExtraPush to tackle the bias introduced by the directed
network. With a proper step size, we show that PG-ExtraPush converges to an optimal solution at a
linear rate under some regular assumptions. We conduct a series of numerical experiments to show
the effectiveness of the proposed algorithm. Specifically, with a proper step size, PG-ExtraPush performs
linear rates in most of cases, even in some nonconvex cases, and is significantly faster than Subgradient-
Push, even if the latter uses a hand-optimized step size. The established theoretical results are also verified
by the numerical results.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

We consider the following consensus optimization problem
defined on a directed, strongly connected network of n agents:

minimize
x∈Rp

f (x) ≜
n∑

i=1

fi(x), where fi(x) = si(x)+ ri(x), (1.1)

and for every agent i, fi is a proper, coercive and possibly noncon-
vex function only known to the agent, si is a smooth function, ri
is generally nonsmooth and possibly nonconvex. We say that the
objective has the smooth+nonsmooth composite structure.

The smooth+nonsmooth structure of the local objective arises
in a large number of signal processing, statistical inference, and
machine learning problems. Specific examples include: (i) the
geometric median problem in which si vanishes and ri is the
ℓ2-norm [1]; (ii) the compressed sensing problem, where si is the
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data-fidelity term, which is often differentiable, and ri is a sparsity-
promoting regularizer such as the ℓq (quasi)-norm with 0 ≤ q ≤ 1
[2,3]; (iii) optimization problems with per-agent constraints,
where si is a differentiable objective function of agent i and ri is the
indicator function of the constraint set of agent i, that is, ri(x) = 0
if x satisfies the constraint and∞ otherwise [4,5].

For a stationary network with bi-directional communication,
the existing algorithms include the primal–dual domain methods
such as the decentralized alternating direction method of multi-
pliers (DADMM) [6,7], and the primal domain methods including
the distributed subgradient method (DSM) [8]. Both algorithms
do not take advantage of the smooth+nonsmooth structure. While
the algorithms that consider smooth+nonsmooth objectives in
the form of (1.1) include the following primal-domain methods:
the (fast) distributed proximal gradient method (DPGM) [9], the
proximal decentralized gradient descent method (Prox-DGD) [10],
the distributed iterative soft thresholding algorithm (DISTA) [11],
proximal gradient exact first-order algorithm (PG-EXTRA) [12]. All
these primal-domain methods consist of a gradient step for the
smooth part and a proximal step for the nonsmooth part. Different
from DPGM, Prox-DGD and DISTA, PG-EXTRA as an extension of
EXTRA [13] has two interlaced sequences of iterates, whereas the
proximal-gradient method just inherits the sequence of iterates in
the gradient method.
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This paper focuses on a directed network with directional com-
munication, which is pioneered by the works [14–16]. When com-
munication is bi-directional, algorithms can use a symmetric and
doubly-stochastic mixing matrix to obtain a consensual solution;
however, once the communication is directional, the mixing ma-
trix becomes generally asymmetric and only column-stochastic. In
the column-stochastic setting, the push-sum protocol [17] can be
used to obtain a stationary distribution for themixingmatrix. Some
recent decentralized algorithms over a directed network include
Subgradient-Push [18], ExtraPush [19] (also called DEXTRA in [20])
and Push-DIGing [21]. The best rate of Subgradient-Push in the
general convex case is O(ln t/

√
t), where t is the iteration number,

and both ExtraPush and Push-DIGing perform linearly convergent
in the strongly convex case. However, all of these algorithms do not
consider the smooth+nonsmooth structure as well as the noncon-
vex case as defined in problem (1.1).

In this paper, we extend the algorithms PG-EXTRA and Extra-
Push to the composite consensus optimization problem with the
smooth+nonsmooth structure, and establish the convergence and
linear convergence rate of the proposed PG-ExtraPush algorithm.
At each iteration, each agent locally computes a gradient of the
smooth part of its objective and a proximal map of the nonsmooth
part, and exchanges information with its neighbors, then uses
the push-sum protocol [17] to achieve the consensus. When the
network is undirected, the proposed PG-ExtraPush reduces to PG-
EXTRA, and when ri ≡ 0, PG-ExtraPush reduces to ExtraPush [19].
If the smooth part of objective is Lipschitz differentiable and quasi-
strongly convex and the nonsmooth part is convex with bounded
subgradient (see Assumption 3), we prove that with a proper step
size, the proposed algorithm converges to an optimal solution
at a linear rate. We provide a series of numerical experiments
including three convex cases and one nonconvex case, to show
the effectiveness of the proposed algorithm. Specifically, when
applied to the convex cases, PG-ExtraPush performs the linear
rates, and is significantly faster than Subgradient-Push, even if
the latter uses a hand-optimized step size. While when applied
to the nonconvex decentralized ℓq regularized least squares re-
gression problems with 0 ≤ q < 1, it can be observed that the
proposed algorithm performs an eventual linear convergence rate,
that is, PG-ExtraPush performs a linear decay starting from a few
iterations but not the initial iteration. This means that if we can
fortunately get a good initial guess, the proposed algorithm PG-
ExtraPush might decay linearly even in these nonconvex cases.

It should be pointed out that the extension from ExtraPush [19]
to PG-ExtraPush is non-trivial. The main differences between the
proposed algorithm PG-ExtraPush and ExtraPush [19] can be sum-
marized as follows:

1. On algorithm development. Clearly, PG-ExtraPush extends
ExtraPush to handle nonsmooth objective terms. This ex-
tension is not the same as the extension from the gradient
method to the proximal-gradient method, as well as the
extension from EXTRA [13] to PG-EXTRA [12]. As the reader
will see, PG-ExtraPush will have three interlaced sequences
of iterates, whereas the proximal-gradient method just in-
herits of the sequence of iterates in the gradient method;
and PG-ExtraPush uses the proximal maps of a sequence of
transformed functions of ri associatedwith a positiveweight
sequence {wt

} essentially introduced by the directed graph,
while PG-EXTRA utilizes the proximity operator of ri.

2. On convergence analysis. Although the convergence analy-
sis of this paper is motivated by the existing analysis in [19],
there are several new proof techniques. The convergence of
many existing algorithms like ExtraPush [19] is established
based on a similar inequality of (4.16) as presented in Theo-
rem 3. However, it is difficult to directly prove that such an

Fig. 1. A directed graph G (left) and its mixing matrix A (right) [19].

inequality holds for all iterations of PG-ExtraPush. Instead,
we can only establish the inequality (4.16) for a fixed iter-
ation of PG-ExtraPush under the boundedness assumption
of the previous two iterates. In order to establish the key
inequality for all iterations, an induction technique is used
as shown in the proof of Theorem 3. Moreover, the linear
convergence rate of the proposed algorithm is established
from the key inequality (4.16) via a recursive way. All of
these are different from the convergence analysis in [19].

The rest of paper is organized as follows. Section 2 introduces
the problem setup. Section 3 develops the proposed algorithm.
Section 4 establishes its convergence and convergence rate. Sec-
tion 5 presents our numerical results. We conclude this paper in
Section 6.

Notation: Let In denote an identity matrix with the size n × n.
We use 1n ∈ Rn as a vector of all 1’s. For any vector x, we let xi
denote its ith component and diag(x) denote the diagonal matrix
generated by x. For any matrix X , XT denotes its transpose, Xij

denotes its (i, j) th component, and ∥X∥ ≜
√
⟨X, X⟩ =

√∑
i,jX

2
ij

denotes its Frobenius norm. The largest and smallest eigenvalues
of matrix X are denoted as λmax(X) and λmin(X), respectively. For
any matrix B ∈ Rm×n, null(B) ≜ {x ∈ Rn

|Bx = 0} is the null space
of B. Given a matrix B ∈ Rm×n, by Z ∈ null(B), we mean that
each column of Z lies in null(B). The smallest nonzero eigenvalue
of a symmetric positive semidefinite matrix X ̸= 0 is denoted
as λ̃min(X), which is strictly positive. For any positive semidefinite
matrix G ∈ Rn×n (not necessarily symmetric in this paper), we use
the notion ∥X∥2G ≜ ⟨X,GX⟩ for a matrix X ∈ Rn×p.

2. Problem reformulation

2.1. Network

Consider a directed network G = {V , E}, where V is the vertex
set and E is the edge set. Any edge (i, j) ∈ E represents a directed arc
from node i to node j. The sets of in-neighbors and out-neighbors
of node i are

N in
i ≜ {j : (j, i) ∈ E} ∪ {i}, N out

i ≜ {j : (i, j) ∈ E} ∪ {i},

respectively. Let di ≜ |N out
i | be the out-degree of node i. In G,

each node i can only send information to its out-neighbors, not vice
versa.

To illustrate a mixing matrix for a directed network, consider
A ∈ Rn×n where{
Aij > 0, if j ∈ N in

i
Aij = 0, otherwise. (2.1)

The entriesAij satisfy that, for each node j,
∑

i∈VAij = 1. An example
is the following mixing matrix

Aij =

{
1/dj, if j ∈ N in

i
0, otherwise. (2.2)
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