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a b s t r a c t 

In this paper, we propose a refinement of the polynomial method based on sampling theory proposed 

by Castro et al. (2009) to estimate the Shapley value for cooperative games. In addition to analyzing 

the variance of the previously proposed estimation method, we employ stratified random sampling with 

optimum allocation in order to reduce the variance. We examine some desirable statistical features of the 

stratified approach and provide some computational results by analyzing the gains due to stratification, 

which are around 30% on average and more than 80% in the best case. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

One of the most important one-point solution concepts in the 

framework of coalitional games with side payments is the Shapley 

value ( Shapley, 1953 ), which proposes the allocation of resources 

in multiperson interactions by considering the power of the play- 

ers during their various opportunities for cooperation. Since the 

pioneering work by Shapley, the Shapley value has been studied 

widely from a theoretical viewpoint. Many studies have also fo- 

cused on the potential applications of the Shapley value to specific 

problems (e.g., see Lucchetti et al., 2010; Moretti, 2010 ). However, 

since computing the Shapley value is an NP-complete problem (see 

Deng and Papadimitriou, 1994; Fernández et al., 2002 , or Faigle 

and Kern, 1992 , for more details), the problem of its calculation 

must be addressed before it can employed as a useful tool in real 

situations. 

Two main approaches have been employed to address the cal- 

culation of the Shapley value: developing efficient strategies to 

compute the Shapley value exactly. 

Different approaches have been considered for the exact calcu- 

lation of the Shapley value. In order to compute the Shapley value 
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exactly, some specific features of the problem and/or the game 

are assumed. For instance, the Shapley value was obtained in a 

polynomial manner for some voting games by Bilbao et al. (20 0 0) . 

( Granot et al., 2002 ) developed a polynomial algorithm to obtain 

the Shapley value of an extended tree game , where a tree network 

serving heterogeneous customers was constructed. ( Castro et al., 

2008 ) computed the Shapley value for an airport game in polyno- 

mial time by considering that this value was obtained using the se- 

rial cost sharing rule. In addition, Deng and Papadimitriou (1994) , 

Bolus (2011) , Chalkiadakis et al. (2012) , and Conitzer and Sand- 

holm (2006) developed efficient strategies for computing the Shap- 

ley value by finding alternative efficient representations for transfer- 

able utility (TU) games. However, although these methods aim to 

serve as general tools, their applications are constrained to some 

specific classes of games, particularly weighted majority games and 

combinatorial optimization games. Moreover, all of these methods 

require a specific representation of the game. 

By contrast, few studies have focused on the approximation of 

the Shapley value. Considering the widespread application of game 

theory to real-world problems where exact solutions are often not 

possible, then it is necessary to develop algorithms that may facil- 

itate this approximation. 

(i) To the best of our knowledge (also see Maleki et al., 

2014 ), the first attempt to estimate the Shapley value for 

a large class of games was the algorithm proposed by 
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Castro et al. (2009) , who suggested the estimation of the 

Shapley value (or any semivalue) for cooperative games 

based on sampling. The only constraint on this algorithm be- 

ing polynomial is the fact that the worth of any coalition 

must be computed polynomially. This approach generalizes 

the earliest approximation method proposed by Mann and 

Shapley (1960) for estimating the power index of a weighted 

voting game. In fact, Mann and Shapley (1960) stated that: 

“These methods have potential applications beyond the par- 

ticular problem solved here .” Moreover, as proposed in the 

present paper, Mann and Shapley also considered alterna- 

tive sampling methods for reducing the variance of the basic 

Monte Carlo sampling approach. 

(ii) If an efficient general purpose algorithm is available, then it 

will be possible to estimate the Shapley value by refining 

the original procedure by Castro et al. in order to exploit the 

specific properties of the problem considered. Thus, Maleki 

et al. (2014) proposed the use of stratified random sam- 

pling to reduce the estimated error in the original method 

described by Castro et al. They also considered the same 

strata treated in the present paper. However, their allocation 

method ignores the specific features of the game, thereby 

resulting in an estimation method that improves the origi- 

nal method based on simple random sampling, but it gen- 

eral performs poorly compared with the refinement that 

we propose in the present study. The reader may refer to 

Section 6 for a comparative analysis using the cooperative 

games analyzed by Castro et al. (2009) . 

Few studies have developed approximations to estimate the 

Shapley value and most of them are problem specific. Fatima et al. 

(2006) presented a randomized polynomial method for determin- 

ing the approximate Shapley value for weighted voting games and 

k -majority voting games. Crama and Leruth (2007) also proposed 

the estimation of the Shapley value for a complex voting game 

that reflects the structure of shareholdings in complex interlocked 

shareholding structures based on a Monte Carlo simulation. 

In this paper, we propose a refinement based on stratified ran- 

dom sampling, which we use instead of simple random sampling 

to estimate the Shapley value. As found with the original algo- 

rithm, these refined estimations are polynomial if each marginal 

contribution can be calculated in polynomial time. The remainder 

of this paper is organized as follows. In Section 2 , we provide some 

basic concepts and notation. We also describe the ApproShapley al- 

gorithm proposed by Castro et al. (2009) , which is the basis of our 

propose method. In Section 3 , we analyze the sources of the vari- 

ance in the estimations derived from ApproShapley and we propose 

three methods for reducing this variance. First, we propose a gen- 

eral method based on stratified random sampling St-ApproShapley, 

Sh st , and we then determine the optimum allocation of the sam- 

ple sizes in the corresponding strata St-ApproShapley-opt, Sh st, opt . 

We also propose a two-stage estimation method that preserves the 

efficiency of the Shapley value, St-ApproShapley-eff, Sh st, eff, in the 

case where efficiency is a demanding property. In Section 4 , we 

analyze the estimated error for stratified random sampling with 

the optimal allocation approach, and we compare it with the es- 

timation method proposed by Maleki et al., which is described in 

Section 3 . In Section 5 , we present the proposed estimation algo- 

rithm. Finally, in Section 6 , we present some computational results 

to show the improvements obtained using the proposed method 

for the cooperative games analyzed by Castro et al. (2009) . We give 

our conclusions in Section 7 . 

2. Preliminaries 

In this section, we introduce some sampling notation and theo- 

retical games in order to understand the rest of this paper. We also 

recall the original sampling algorithm proposed by Castro et al. 

(2009) upon which our refinement is based. 

A cooperative game in coalitional form with side payments, or 

with TU, is an ordered pair ( N, v ), where N is a finite set of players 

and v : 2 N → R , with 2 N = { S | S ⊆ N} , is a characteristic function on 

N that satisfies v (∅ ) = 0 . For any coalition S ⊆ N , v (S) ∈ R is the 

worth of coalition S and it represents the reward that coalition S 

can obtain by itself if all its members act together. We restrict to 

the case of TU games in the sequel, so we refer to them simply as 

games . For brevity, throughout this paper, the cardinalities of the 

sets (coalitions) N and S are denoted by appropriate small letters n 

and s , respectively. In addition, for convenience, we write the sin- 

gleton { i } as i if there is no ambiguity. When the worth v ( S ) repre- 

sents the cost that players must be charged, the game is known as 

a cost-game and we denote these types of games as ( N, c ). 

Let G N be the vector space of all the games with a fixed player 

set N , and identify (N, v ) ∈ G N by its characteristic function v if 

there is no ambiguity. A value ϕ is an allocation that associates 

with each game (N, v ) ∈ G N a vector ϕ(N, v ) ∈ R 

N , where ϕ i (N, v ) ∈ 

R represents the value of player i, i ∈ N . Shapley (1953) defines his 

value as follows: 

Sh i (v ) = 

∑ 

S⊆N 
i �∈ S 

(n − s − 1)! s ! 

n ! 
(v (S ∪ { i } ) − v (S)) , i ∈ N. (1) 

The value Sh i ( v ) of each player, which is a weighted average of his 

marginal contributions, allows different interpretations, such as the 

payoff that player i receives when the Shapley value is used to pre- 

dict the allocation of resources in multiperson interactions, or his 

power when averages are used to aggregate the power of players 

in their various opportunities for cooperation. 

Weber (1988) gave an alternative characterization of the Shap- 

ley value in terms of all the possible orders of the players, which 

was employed for estimation by Castro et al. (2009) . Let O : N 

→ N be a permutation that assigns the player O ( k ) to each po- 

sition k and let π ( N ) denote the set of all possible permutations 

of the player set N . Given a permutation O ∈ π ( N ), let us de- 

note Pre i ( O ) as the set of predecessors of the player i in the or- 

der O (i.e., P re i (O ) = { O (1) , . . . , O (k − 1) } , if i = O (k ) ). In this set- 

ting, the vector of marginal contributions for a given order O ∈ π ( N ), 

x (O ) = (x (O ) i ) i ∈ N is defined as: 

x (O ) i = v (P re i (O ) ∪ i ) − v (P re i (O )) , i ∈ N. 

Weber (1988) showed that the Shapley value can be expressed 

as the following expectation, where it is assumed that all different 

orders have equal probability: 

Sh i (v ) = 

∑ 

O ∈ π(N) 

1 

n ! 
x (O ) i , i ∈ N. (2) 

Thus, since the Shapley value is an expectation, Castro et al. 

(2009) proposed its statistical estimation. Next, we describe the al- 

gorithm that they proposed (emphApproShapley), which is based 

on a unique simple random sampling process for estimating the 

Shapley value Sh i of all players i ∈ N . 

1. The population of the sampling process P is the set of all possi- 

ble orders of players, i.e., P = π(N) . Each sampling unit repre- 

sents an order O ∈ π ( N ). 

2. The vector parameter under paper is Sh = (Sh i ) i ∈ N . 
3. The characteristic observed in each sampling unit, O ∈ π ( N ), is 

the vector of the marginal contributions for that order O , i.e., 

x (O ) = (x (O ) i ) i ∈ N . 
4. The estimate of the parameter Sh , ˆ Sh , is the mean of the 

marginal contributions over the sample M , i.e., ˆ Sh = ( ̂  Sh i ) i ∈ N , 
where 

ˆ Sh i = 

1 

m 

∑ 

O ∈ M 

x (O ) i , i ∈ N. 
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