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A B S T R A C T

This research presents a fast algorithm for projected support vector machines (PSVM) by selecting a basis vector
set (BVS) for the kernel-induced feature space, the training points are projected onto the subspace spanned by
the selected BVS. A standard linear support vector machine (SVM) is then produced in the subspace with the
projected training points. As the dimension of the subspace is determined by the size of the selected basis vector
set, the size of the produced SVM expansion can be specified. A two-stage algorithm is derived which selects and
refines the basis vector set achieving a locally optimal model. The model expansion coefficients and bias are
updated recursively for increase and decrease in the basis set and support vector set. The condition for a point to
be classed as outside the current basis vector and selected as a new basis vector is derived and embedded in the
recursive procedure. This guarantees the linear independence of the produced basis set. The proposed algorithm
is tested and compared with an existing sparse primal SVM (SpSVM) and a standard SVM (LibSVM) on seven
public benchmark classification problems. Our new algorithm is designed for use in the application area of
human activity recognition using smart devices and embedded sensors where their sometimes limited memory
and processing resources must be exploited to the full and the more robust and accurate the classification the
more satisfied the user. Experimental results demonstrate the effectiveness and efficiency of the proposed
algorithm. This work builds upon a previously published algorithm specifically created for activity recognition
within mobile applications for the EU Haptimap project [1]. The algorithms detailed in this paper are more
memory and resource efficient making them suitable for use with bigger data sets and more easily trained SVMs.

1. Introduction

The core aim of the research presented in this paper is to refine and
extend a new generation of algorithms to underpin, much more
accurately, the process of activity recognition using data derived from
mobile sources. As the popularity of low cost portable hand-held
computers and mobile phones increases, opportunities for novel
context aware applications have grown. Mobile phones can be used
along with wearable accelerometers to create valid and reliable
measures of physical activity. However, to do this effective algorithms
are also needed to interpret the data in the context of different
activities. We do this by extending the algorithms published previously
[1] which were tested on activity data collected from mobile sensors.
Here we improve upon those algorithms and more thoroughly test
them (using standard benchmarks) in terms of memory efficiency
which is crucial for the mobile storage devices typically used for
assisted living.

The algorithms we have developed are based on the Support vector
machine(SVM). SVMs are a set of empirical data modelling techniques,

which are firmly grounded in the VC theory proposed by Vapnik [2],
and provide the start-of-the-art performance. The structural risk
minimization (SRM) principle implemented by SVM overcomes the
difficulties with generalization that have been suffered by traditional
neural networks [3], and allows SVMs to provide very accurate
solutions.

There has been increasing interest in seeking sparse representa-
tions of regular (accurate) SVMs to tackle this problem. Existing
techniques proposed for reduced sizes of SVMs fall into two classes:
post-training algorithms and algorithms that directly yield sparse
SVMs, referred to as sparse algorithms or direct algorithms. Since the
generalization performance of a regular SVM is guaranteed (by the
SRM principle), post-training algorithms produce a standard SVM in
advance and then approximate the normal vector to the separating
hyperplane in the feature space, where the SVM discriminant function
is expressed as a linear expansion of the support vectors (SVs). A family
of linear expansions in the feature space of smaller sizes are used to
approximate the normal vector which minimizes the Euclidean dis-
tance between the approximation normal and the original one in the
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feature space is identified. The approximated SVM discriminant
function is thus expressed as the inner product of the approximating
normal vector and an input vector in the feature space.

Downs [4] proposed an exact algorithm which prunes SVs from the
full SVM solution. Given that the normal vector is a linear combination
of the support vectors, all SVs that are linearly dependent (in the
feature space) are removed. Obviously, the maximal size of the reduced
support vector set is the number of dimensions of the feature space,
although it is generally unknown in nonlinear cases. Exact algorithms
yield sparse solutions without any loss of the ability to generalize (as
the normal vector remains unchanged). However the exact method
does not work when a further reduction to the support vector set (SVS)
is desired.

Most existing post-training algorithms are approximation methods
that approximate the normal vector in a linear expansion of much
smaller sizes.

On the other hand sparse SVM algorithms directly minimize the
primal objective function with the additional constraint that the normal
vector will be a linear expansion of a given number of vectors in the
feature space. This means that the search space for the normal vector is
restricted, rather than the full feature space required for standard
SVMs, and that the resulting reduced size SVM still have a maximal
margin.

Lee and Mangasarian [5] randomly choose a subset (typically 1–
10%) of the given training vectors as candidate SVs during the
optimization while classification errors are evaluated over the full
training set. In this way the scale of the problem of SVM training (the
number of variables) is reduced, resulting in greatly reduced SVM
(RSVM) classifiers. However as the expansion vectors are chosen from
a random candidate set, and may not be good representatives of the
training data, good classification performance can not be guaranteed
when the randomly chosen subset is small [6].

Addressing this problem, Wu et al. [7,8] proposed algorithms for
directly building sparse kernel classifiers. The normal vector to the
separating hyperplane is expressed as a linear expansion of a given
number of vectors in the feature space. Direct algorithms minimize the
primal objective function for standard SVMs with the linear expansion
substituted for the normal vector. In addition, the expansion vectors
(XVs) for the normal vector are optimized using a gradient-based
search, rather than selected from the training set. However optimiza-
tion of the XVs is a hard non-convex nonlinear problem. Keerthi et al.
[9] proposed a sequential incremental algorithm that selects one vector
from the training set each time, hence avoiding the hard non-convex
optimization problem for XVs. The corresponding expansion coeffi-
cients are optimized using a Newton-Raphson method such that the
primal objective function is minimized. This incremental selection is
iterated until a given number of vectors are selected.

Typically SVMs are not preferred for real-time applications with
limited computational resources (e.g. available RAM or CPU speed)
since a large set of support vectors (SVs) is needed to form the SVM
classifier, making it computationally complex and expensive to imple-
ment. Whilst the advances in sparse SVMs have helped to overcome
this issue from a software perspective it is also important to consider
the hardware constraints especially when using smart devices. Anguita
[10] introduced the concept of a hardware friendly SVM. This method
exploits fixed point arithmetic in the feed-forward phase of the SVM.
They then extended their models for multi-class problems [11]. They
concluded that the use of fixed point calculations is useful in activity
recognition applications because they require less memory, processor
time and power consumption. Whilst this is important, it is also
necessary to refine the basis of the SVM to make it more efficient
whether or not it is based on fixed point integers. The main contribu-
tion of our paper in terms of algorithmic progress is to project the
training points into the subspace spanned by a set of basis vectors
selected in the feature space. In the subspace, the SVM is built with the
projected training points, referred to as the projected SVM (PSVM).

The basis vectors are initially selected from the training set incremen-
tally, and then refined by combining decremental pruning and incre-
mental selecting, resulting in a solution which is optimized over the
training set. A condition for a vector that can be selected as an
additional basis vector is proposed. This condition is checked recur-
sively in the selection and refining procedures, thus confirming the
linear independence of the selected basis set in the feature space. An
advantage of PSVM over regular SVM is that the size of the PSVM
expansion is determined by the size of the basis set, rather than the
number of SVs. Compared with existing sparse algorithms, the SVM
does not need to be built in advance and directly minimizes the primal
objective function rather than approximating the SVM normal vector.
It approaches locally optimal solutions while avoiding hard non-convex
non-linear searches. This makes our algorithms particularly suited for
implementation on mobile devices and therefore applicable to a range
of health-care and assisted living applications.

In Section 2, the PSVM is presented following an outline of regular
SVMs in the primal. Section 3 details a sequential algorithm to solve for
the PSVM and optimize the basis set. An implementation of the PSVM
algorithm follows in Section 4, where the computational complexity of
the algorithm is analyzed. In Section 5, the proposed algorithm is
tested over some public benchmark problems and compared with
LibSVM for standard SVMs and the sparse SVM algorithm from [9].
Section 6 draws some conclusions on our algorithm. In particular, since
in [1] we know the algorithms are suited to activity classification on
mobile devices, we use these new benchmark tests to verify the
advances made to the algorithms in terms of memory efficiency as
clearly they will perform better on the activity classification data they
were previously tested on.

2. Projected support vector machines

Given a data set of N point-label pairs y k Nx{( , ), = 1,…, }k k ,
referred to as the training set, each point is represented as a row
vector Rx ∈k

n1× , to which a label of either +1 or −1, i.e., y ∈ {+1, −1}k ,
is attached. This means the training points fall into two categories. This
is a binary data classification problem, where a classifier is to be found
that can separate the points into two classes. For convenience, the
training point set and the associated labels are denoted as N n× matrix
X x x= [ ,…, ]T

N
T T

1 and N×1 column vector y yy = [ ,…, ]N
T

1 .

2.1. Regular SVMs in the primal

Conceptually, a SVM maps its input vector to a high-dimensional
space through a kernel-induced map ϕ ϕx f x: → = ( ), where Rx ∈ n1×

is an arbitrary input point to the SVM, ϕf x= ( ) denotes its map in the
feature space. The high-dimensional space is referred to as the feature
space, while a point in the feature space, say f , is referred to as a
feature. In contrast, the space where input vectors x are from is
referred to as the input space. Note that f is represented as a row vector
as is x. However the number of dimensions of f is normally unknown,
thus f cannot be represented numerically.

A SVM defines two parallel hyperplanes y bfw= + ± 1 in the
feature space that bound the two classes of points in the training set,
namely

⎧⎨⎩
b y
b y

f w
f w

+ ≥ +1, if =+ 1
+ ≤ −1, if = −1

k k

k k (1)

hold for k N= 1,…, , or equivalently

y b k Nf w( + ) ≥ 1, = 1,…,k k (2)

The hyperplane y bfw= + that lies midway between the two parallel
bounding hyperplanes separates the training points, where ϕf x= ( )k k

denotes the map of training point xk (a point from the input space) in
the feature space, w denotes the normal (column) vector common to
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