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a b s t r a c t 

Past research has demonstrated that a reduced-order model (ROM) can be two-to-three orders of mag- 

nitude smaller than the original model and run considerably faster with acceptable error. A standard 

method to construct the system matrices for a ROM is Proper Orthogonal Decomposition (POD), which 

projects the system matrices from the full model space onto a subspace whose range spans the full model 

space but has a much smaller dimension than the full model space. This projection can be prohibitively 

expensive to compute if it must be done repeatedly, as with a Monte Carlo simulation. We propose a Fast 

Algorithm to reduce the computational burden of constructing the system matrices for a parameterized, 

reduced-order groundwater model (i.e. one whose parameters are represented by zones or interpolation 

functions). The proposed algorithm decomposes the expensive system matrix projection into a set of sim- 

ple scalar-matrix multiplications. This allows the algorithm to efficiently construct the system matrices 

of a POD reduced-order model at a significantly reduced computational cost compared with the standard 

projection-based method. The developed algorithm is applied to three test cases for demonstration pur- 

poses. The first test case is a small, two-dimensional, zoned-parameter, finite-difference model; the sec- 

ond test case is a small, two-dimensional, interpolated-parameter, finite-difference model; and the third 

test case is a realistically-scaled, two-dimensional, zoned-parameter, finite-element model. In each case, 

the algorithm is able to accurately and efficiently construct the system matrices of the reduced-order 

model. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

1.1. Model reduction 

In recent years, the trend of research has been to construct 

highly discretized simulation models that are computationally 

expensive for even one simulation run. At the same time, many 

techniques require repeated model calls, for example solving 

large-scale optimization problems, particularly those dealing with 

uncertainty. These competing needs affect not just groundwater 

research but all hydrology research fields, for example in the areas 

of planning and management ( Baú and Mayer, 2006; Sreekanth 

et al., 2016 ) or monitoring network design ( Luo et al., 2016 ). 

Unfortunately, as groundwater models grow in complexity, so does 

the computational burden of running them. When only a few runs 

are required, this computational burden is not a major concern; 

however, when a groundwater model must be called repeatedly, 
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for example in a Monte Carlo simulation, the computational 

burden may render a problem infeasible to solve because the 

model must be called tens if not hundreds of thousands of times 

( Babbar-Sebens and Minsker, 2010; Reed et al., 20 0 0; Ushijima 

and Yeh, 2015, 2013 ). This computational burden also leads to an 

inability of a heuristic search to find a near-optimal solution in a 

reasonable timeframe. This inability is one of the major obstacles 

to the general use of evolutionary optimization schemes ( Maier et 

al., 2014 ). To alleviate the computational burden of running large- 

scale models, a number of methods have been proposed ( Asher 

et al., 2015 ), including reduced-order models (ROMs). These low- 

dimensional, surrogate models seek to reproduce the results of 

complex models at a much reduced computational cost ( Antoulas 

et al., 2001 ). In addition, the literature shows that ROMs can be 

two-to-three orders of magnitude smaller than the original model 

and run considerably faster with acceptable error. Projection-based 

methods are often used to construct an ROM. Some of these 

methods project the groundwater model onto its null space to 

quantify uncertainty ( Doherty and Christensen, 2011 ); others, such 

as Proper Orthogonal Decomposition (POD), project onto an or- 

thonormal subspace that spans the model’s solution space ( Asher 

et al., 2015 ). A final example is the Dynamic Emulation Modeling 
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approach ( Castelletti et al., 2012a, 2012b ), which projects onto a 

subspace that has some real-world significance. 

1.2. Proper orthogonal decomposition 

The theory behind solution space projection methods states 

that if the solutions from a groundwater model exist in some 

space V ∈ R N n , where N n is the dimension of the original model, 

there exists some subspace λ ∈ R n p such that Range ( λ) = Range ( V ) 

and n p ≤ N n . If n p � N n , and the original (often referred to as the 

full) groundwater model can be projected onto λ, then solutions 

to the original groundwater model can be found with much less 

computational effort. POD has been studied extensively in the 

past ( Cazemier et al., 1998; Kowalski and Jin, 2003; Willcox and 

Peraire, 2002 ) and many studies have demonstrated that a POD 

reduced-order groundwater model significantly decreases the cost 

of running the model ( McPhee and Yeh, 2008; Siade et al., 2010 ). 

Examples of applications of POD include predictive groundwater 

models ( Boyce and Yeh, 2014; McPhee and Yeh, 2006; Pasetto 

et al., 2013; Siade et al., 2010; Vermeulen et al., 2006 ), solving 

the inverse problem of parameter estimation ( Liu et al., 2013; 

Siade et al., 2012 ), and modeling of variable density flow and 

transport processes ( Li et al., 2013 ). These studies provide an 

excellent background on the development and application of POD 

to groundwater models, described briefly here. 

The governing partial differential equation (PDE) for three- 

dimensional flow in a confined, anisotropic aquifer is: 
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where K i is the hydraulic conductivity along the i th coordinate axes, 

h is the hydraulic head, S s is the specific storage, t is time, and f is a 

collection of all the forcing terms (e.g. pumping or recharge) ( Bear, 

1979 ). Given Eq. (1) , we apply finite-difference or finite-element 

approximations to this PDE to produce the following set of linear 

ordinary differential equations (ODEs): 

B 

dh 

dt 
+ A (k ) h = q 

where B ∈ R N n x N n is the mass matrix, A (k ) ∈ R N n x N n is the stiffness 

matrix, and q ∈ R N n is a vector of the forcing terms. When we ap- 

proximate the time derivative using a backward finite-difference, 

this model can be solved over time as: 

( B + A (k ) ) h = 

˜ A (k ) h = 

˜ b (2) 

where k ∈ R N n is a vector of the hydraulic conductivity in each 

node of the finite-difference (or finite-element) approximation, the 

system matrix ˜ A (k ) ∈ R N n x N n depends on k , and h ∈ V . Eq. (2) is 

referred to as the full model and its system matrix depends on 

many properties (e.g. specific storage or temporal or spatial dis- 

cretization). In this paper, we will focus on its dependence on k . 

POD begins by finding some matrix P ∈ R N n x n p whose columns 

form an orthonormal basis for V . The following multiplication is 

then performed: 

P 

T ˜ A (k ) Pr = P 

T ˜ b (3) 

where P 

T ˜ A (k ) P ∈ R n p x n p is the system matrix for the reduced 

model and r ∈ R n p is the state vector of the reduced model. When 

n p � N n , we are able to solve this reduced model ( Eq. (3) ) at a 

much reduced computational cost compared to the full model ( Eq. 

(2) ). The solutions from the reduced model ( r ) can be projected 

back onto the full model space ( V ) to approximate the solutions 

from the full model ( h ): 

h ≈ Pr 

The accuracy of this approximation depends on the quantity 

and quality of the information that is captured in the P matrix. 

Excellent research has been published on ways to construct P to 

lead to accurate approximations of h within a user specified er- 

ror tolerance ( Pasetto et al., 2013; Siade et al., 2010 ). It has been 

shown that methods exist that allow us to construct P in a way 

that leads to good approximations of h independent of changes in 

model forcing ( Siade et al., 2010 ) and/or model parameters (e.g. 

k ) ( Pasetto et al., 2013; Vermeulen et al., 2004 ). In general, these 

methods rely on taking n p realizations of the full model to cap- 

ture the maximum information that can be gained about the full 

model. 

The ability to construct a reduced model with an accept- 

able error allows us to solve previously infeasible types of prob- 

lems ( Boyce and Yeh, 2014; Ushijima and Yeh, 2015, 2013 ). How- 

ever, a major drawback of POD model reduction is the computa- 

tional burden of constructing the system matrix for the reduced 

model. As Eq. (3) shows, the system matrix for the reduced model 

( A r ( k )) can be constructed by calculating the following matrix 

multiplication: 

˜ A r (k ) = P 

T ˜ A (k ) P (4) 

The FLOP (floating point operation) count of this matrix multi- 

plication is O ( N 

2 
n + n 3 p ) . Since we desire n p << N n , the FLOP count 

is O ( N 

2 
n ) . If we know k , this construction could even be performed 

once; therefore, the computational burden is manageable if per- 

formed online (i.e. during a simulation). The construction even 

could be conducted offline (i.e. performed prior to the simulation) 

and stored, such that the only online computational burden is in- 

putting the system matrix. Unfortunately, if the groundwater re- 

sponse needs to be simulated under different hydraulic conduc- 

tivities (e.g. a Bayesian inverse problem ( Boyce and Yeh, 2014 ), a 

Monte Carlo simulation ( Pasetto et al., 2014 ), or worst-case sce- 

nario design ( Ushijima and Yeh, 2015 )), the simulation may require 

the online construction of the system matrix of the reduced model 

(referred to as the reduced system matrix) tens if not hundreds 

of thousands of times. Since the FLOP count of solving the reduced 

model is O ( n 3 p ) , it is clear that the computational cost of construct- 

ing the reduced model dominates the computational cost of solv- 

ing the reduced model and easily can be the dominant cost of the 

simulation. 

This drawback of POD is rarely discussed in the literature. Most 

of the published literature focuses on the reduction in compu- 

tational burden once the reduced model has been constructed, 

but seldom discusses the total computational cost (constructing 

and running the reduced model). It is possible to employ cer- 

tain methods to control the online computational cost; for exam- 

ple, we could limit the range of k for online construction or con- 

struct A r ( k ) offline for some set values of k . Unfortunately, both of 

these methods are undesirable as they can limit the applicability of 

the simulation. One technique that has been developed to reduce 

the online computational burden of re-computing the reduced sys- 

tem matrices is the discrete empirical interpolation method (DEIM) 

( Chaturantabut and Sorensen, 2010 ). DEIM seeks to identify critical 

indices in the model space around which a new projection matrix 

can be developed that will reduce the row space of the model do- 

main. When coupled with POD (which reduces the column space 

of the model domain), DEIM is able to make inexpensive online 

calculations and then interpolate the results over the full model 

domain, avoiding the expense of projecting the full system ma- 

trix. This technique has been applied to many studies in hydrol- 

ogy and groundwater, including those dealing with shallow wa- 

ter equations ( ̧S tef ̆anescu and Navon, 2013 ), flow through porous 

media ( Ghasemi and Gildin, 2015 ), and solving the Navier-Stokes 

equations ( Xiao et al., 2014 ). While this technique is useful, it re- 

quires an additional model reduction (DEIM) on top of the original 

model reduction (POD), each of which introduces additional error 

to the final reduced model. 
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