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A B S T R A C T

Network Fundamental Diagram (NFD) or Macroscopic Fundamental Diagram (MFD) represents
dynamics of traffic flow at the network level. It is used to design various network-wide traffic
control and pricing strategies to improve mobility and mitigate congestion. NFD is well defined
when congestion distribution in the network is homogenous. However, in real world networks
traffic is often heterogeneously distributed and initiated from an asymmetric and time-varying
origin-destination (OD) demand matrix. In this paper, we formulate a resource allocation pro-
blem to find the optimal location of fixed measurement points and optimal sampling of probe
trajectories to estimate NFD accounting for limited resources for data collection, network traffic
heterogeneity and asymmetry in OD demand in a real-world network. Data from probe trajec-
tories are used to estimate space-mean speed while data from fixed detectors are used to estimate
traffic flow. Thus, the proposed model does not require an aggregate penetration rate of probe
vehicles to be known a priori, which is one of the main contributions of this study. The proposed
model is a mixed integer problem with non-linear constraints known to be NP-hard. A heuristic
solution algorithm (Simulated Annealing) is implemented to solve the problem. Using a cali-
brated simulation-based dynamic traffic assignment model of Chicago downtown network, we
present successful application of the proposed model and solution algorithm to estimate NFD.
The results demonstrate sensitivity of the NFD estimation accuracy to the available budget,
namely number of fixed measurement points and probe trajectories. We show that for a fixed
proportion of OD trajectories, the increase in the proportion of fixed detection points increases
the accuracy of NFD estimation as expected. However, when the proportion of fixed detection
points is set to be constant, the increase in the proportion of OD trajectories does not necessarily
improve the estimated NFD. Results hold true when varying demand is used to emulate variation
in day-to-day traffic patterns. The robustness of the proposed methodology to the initial solution
and trajectory availability for each OD pair is demonstrated in the numerical results section. We
also found that a uniform distribution of selected links and ODs for NFD estimation across the
network may not necessarily result in an optimal solution. Instead, distribution of links and OD
pairs should follow the same distribution of links and OD pairs in the network.
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1. Introduction

The network-wide relationship between average flow, average density, and average speed, known as Network Fundamental
Diagram (NFD) or Macroscopic Fundamental Diagram (MFD), is a powerful tool for representing traffic dynamics in large-scale
networks (Godfrey, 1969; Mahmassani et al., 1984, 1987; Geroliminis and Daganzo, 2008). NFD can be used to design and implement
specific control and pricing strategies to improve mobility at the network level (Haddad and Geroliminis, 2012; Zheng et al., 2012;
Geroliminis et al., 2012; Keyvan-Ekbatani et al., 2012; Ramezani et al., 2015; Yildirimoglu et al., 2015; Haddad and Mirkin, 2016;
Mariotte et al., 2017). NFD is well defined and has low scatter when congestion distribution in the network is homogenous (Buisson
and Ladier, 2009; Ji et al., 2010; Mazloumian et al., 2010; Daganzo et al., 2011; Gayah and Daganzo, 2011; Geroliminis and Sun,
2011; Saberi and Mahmassani, 2012; Mahmassani et al., 2013; Saberi and Mahmassani, 2013; Knoop et al., 2012; Zockaie et al.,
2014b). Estimating NFD in real-world networks, when data collection budget is limited and network traffic is heterogeneous and
initiated from an asymmetric and time-varying origin-destination (OD) demand matrix, is a challenging task.

Analytical methods to estimate NFD based on variational theory developed previously by Daganzo and Geroliminis (2008) and
later refined by Geroliminis and Boyaci (2012) and Leclercq and Geroliminis (2013) are limited to urban corridors in stationary
conditions and cannot be applied to large-scale heterogeneous networks. A recent study by Leclercq et al. (2014) evaluated existing
estimation methods for NFD focusing only on homogenous network loading. They suggested that using the complete population of
vehicle trajectories to estimate NFD is the only estimation method with no bias agreeing with recent findings of Saberi et al. (2014).
However, availability of the entire population of trajectories is still limited in urban networks and will continue to be limited even
when connected vehicles are deployed in near future. Gayah and Dixit (2013) proposed a method to estimate average network
density using probe vehicles combined with NFD. Leclercq et al. (2014) suggested that combining information from probe vehicles
and traffic loop detectors can also provide fairly accurate estimation of NFD in stationary conditions even for sample rates as low as
10%. Other studies by Ortigosa et al. (2014) and Nagle and Gayah (2014) estimate NFD using combined mobile probes and traffic
loop detector data. Ortigosa et al. (2014) studied the optimal number and location of measurement points by minimizing the error in
estimated average network density. However, they overlooked the potential of the application of probe trajectory data in NFD
estimation. Nagle and Gayah (2014) proposed a method to estimate average network density and flow using data from mobile probes
given a constant and known penetration rate of probes across a network. In a later study, Du et al. (2015) extended the method to
varying penetration rates with heterogeneous demand in an idealized square grid network. A limitation of this method is that the
penetration rates of probes must be known a priori. More recently, Ambuhl and Menendez (2016) proposed a fusion algorithm that
decomposes the network into two sub-networks and uses both loop detector data and floating car data to estimate NFD.

Nomenclature

T Number of time intervals over the horizon for NFD
estimation

t time interval index
ζ weight factor in objective function for minimizing

deviation of estimated average flow from the
ground-truth average network flow

η weight factor in objective function for minimizing
deviation of estimated average density from the
ground-truth average network density

Qt ground-truth average network flow at time in-
terval t

Qt estimated average network flow by fixed detectors
at time interval t

Kt ground-truth average network density at time in-
terval t

Kt estimated average network density at time interval
t

I number of links in the network
i Link number index
qi

t flow at link i at time interval t
li lane-length of link i
si

t space-mean speed at link i at time interval t
xi binary variable associated with fixed detection at

link i
J number of origin-destination pairs in the network
j origin-destination pair index
K j( ) number of trajectories available for origin-desti-

nation pair j

k Trajectory index for origin–destination pairs
pijk

t binary parameter specifying if kth trajectory of
origin-destination pair j includes link i at time in-
terval t

∼ttijk
t experienced travel time at link i and time interval t

by kth trajectory of origin-destination pair j
̂tti
t experienced average travel time at link i and time

interval t by available trajectory of selected origin-
destination pairs

̂si
t Estimated space-mean speed from mobile probe

trajectories at link i at time interval t
zi

t binary variable specifying if there is any trajectory
from selected origin-destination pairs that includes
link i at time interval t

M a large number
wi

t binary variable specifying if estimated speed is
available through at least one trajectory from se-
lected origin-destination pairs including link i at
time interval t, and estimated flow is available
through the detector at link i

yj Binary variable associated with the probe trajec-
tory data for origin–destination pair j

ci data collection or acquisition cost if there is a fixed
detector at link i

f j data collection or acquisition cost for probe tra-
jectory data of origin-destination pair j

B total available budget for data collection or ac-
quisition

A. Zockaie et al. Transportation Research Part C 86 (2018) 245–262

246



https://isiarticles.com/article/150590

