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A B S T R A C T

In this article, a cluster-based niching differential evolution algorithm, which combines the cluster pool, the
niche method, and the differential evolution algorithm, has been employed to optimize the stable structures of
iron clusters. The cluster pool is responsible for generation of the niche sub populations, and the differential
evolutionary algorithm is used for the evolution of the population. A variety of mutation strategies have been
applied in the algorithm instance. Moreover, the crossover operator of plane cut cross and the adjustment
strategy make the algorithm more suitable for structural optimization of clusters. Subsequently, the performance
of the algorithm has been examined by the effect of cluster pool size on the convergence speed and structural
diversity. The accuracy and effectiveness of our algorithm have been verified by analyses of energy and struc-
tural evolutions. Finally, structural evolution of iron clusters with 3–80 atoms has been predicted by this al-
gorithm.

1. Introduction

Metallic clusters have attracted great attention due to their potential
applications in many fields such as physics, chemistry, biology and so
on [1–4]. Among metallic clusters, iron (Fe) clusters are of considerable
interest due to their exceptional magnetic properties such as ferro-
magnetism, high coercive force, low Curie temperature, high magnetic
susceptibility. To date, Fe clusters have been extensively used in the
aspects of giant magnetoresistance, magnetic recording, magnetic re-
frigeration, and magnetic probes [5]. As cheap metallic catalysts, Fe
clusters have been widely used in Fischer-Tropsch reaction for produ-
cing hydrocarbon by using CO and H2 in coal and natural gas. They can
also be used as a cathode catalyst for fuel cell [6]. However, both the
magnetic and catalytic properties of Fe clusters are strongly dependent
on their structures. Therefore, an investigation on the structural prop-
erties of Fe clusters is crucial for understanding their physical and
chemical performances.

Theoretically, to predict the structure of clusters is a typical global
optimization problem. The optimization goal is to get the lowest-energy
structure of clusters [7]. Essentially, exploring the stable structures of
Fe clusters is to search the lowest energy of potential energy function.
Usually, the potential energy function describes a potential energy
surface of multi-dimensional space. The potential energy surface is
considerably complex, thus searching the lowest energy on the

potential energy surface is rather time-consuming. Furthermore, there
are plenty of local minimum corresponding to metastable structures of
cluster on the potential energy surface, the number of local minimum
grows exponentially with the cluster size [8]. So far, many global op-
timization methods, such as heuristic algorithms and evolutionary al-
gorithms, have been developed to optimize the structure of clusters.
According to the number of individuals in the searching process, the
algorithms can be divided into three categories: single individual
searching algorithms, single population searching algorithms, and multi
populations searching algorithms. Single individual searching algo-
rithms, such as Monte Carlo method [9], Basin Hopping algorithm
[10,11], simulated annealing algorithm [12], belong to simple
searching algorithms. The search efficiency of these algorithms is poor
due to the lack of repeatable search. Single population searching al-
gorithms, such as genetic algorithm [13,14], particle swarm optimiza-
tion algorithm [15,16], and artificial immune algorithm [17,18], are
superior in comparison with the single individual searching algorithms
because there exists the information exchange between different in-
dividuals in single population searching algorithms. However, they are
apt to be trapped into the local optimum, leading to the premature
convergence. Multi populations searching algorithms, including
common pool [19], topology structure [20], and niche method [21], are
able to improve the search capability of global optimization remarkably
because they may maintain population diversity effectively and avoid
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the premature phenomena in single population searching algorithms.
In this article, we have proposed, for the first time, a cluster-based

niching differential evolution algorithm to optimize the structure of Fe
clusters by the multi populations searching algorithms with cluster-
based niching method. As a first step, the effect of cluster pool size on
convergence speed of algorithm and structural diversity has been ana-
lyzed. Secondly, the accuracy and effectiveness of the proposed algo-
rithm have been verified by comparison experiments. Finally, we have
examined the stable structures of Fe clusters with 3–80 atoms by using
the proposed algorithm, and predict the evolutional law of stable
structures with increasing cluster size. This article is structured as fol-
lows. Section 2 describes the potentials of Fe and the cluster-based
niching differential evolution algorithm. Section 3 presents the calcu-
lated results and discussion. The main conclusions are summarized in
Section 4.

2. Methodology

2.1. Potential description

In theoretical study of clusters, it is considerably important to ac-
curately describe the interatomic interaction. In this work, the Finnis-
Sinclair (FS) potentials [22], which are based on the second-moment
approximation of the tight-bonding formulation, have been employed
to describe the interaction between atoms in Fe clusters. The FS po-
tentials represent many-body interactions, and their parameters are
optimized to describe the lattice parameter, cohesive energy, elastic
constants, vacancy formation energy, stacking-fault energy, and pres-
sure-volume dependency. They have been confirmed to reproduce very
well the basic structural and dynamics properties of Fe [23]. The total
energy for a system of N atoms is given as

∑ ∑ ∑= −
= = =

E V r A ρ1
2

( ) ,tot
i

N

j

N

ij ij
i

N

i
1 1 1 (1)

where rij represents the distance between atoms i and j; ρi is the elec-
tronic charge density at the site of atom i, it can be expressed by
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in which ϕ r( )ij ij is a cohesive term related to the sum of squares of
overlap integrals for the valance electrons, represents the contribution
of electronic charge density for j atom to i atom, can be defined as
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where d is a cut-off parameters assumed to lie between the second- and
third-neighbors, the value of d is < <a d a2 , a is a lattice constant.
For Fe element, the expression of rΦ( ) can be modified by
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where the range of these parameters should be set to enable the rΦ( )
reaching the maximum in first- nearest-neighbor. For example, if d= a,
then <β 4.975; otherwise, =d a2 , then <β 1.7199.

In Eq. (1), V r( ) is a repulsive two-body interaction, interpreted in
the tight-binding theory as the repulsion between core electrons on
neighboring atoms, expressed as
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where c is a cut-off parameter, just like the parameter d; c0, c1, and c2
are free parameters fitting to experimental data based on specific ele-
ments. All parameters of FS potentials for Fe have been listed in Table 1.

2.2. Transformation for potential energy surface

Actually, the potential function of a cluster corresponds to a com-
plicated potential energy surface in hyperspace. The potential energy
surface describes the relationship between the cluster energy and the
relative position of each atom in the cluster. Therefore, investigating
the stable structure of a cluster by minimizing its total energy is to
search the global minimum of the potential energy surface. However, it
is difficult to find the lowest energy on the potential energy surface
directly even for a system consisting a few atoms due to the complexity
of potential energy surface. To reduce the search space and improve the
searching efficiency, in this work we transform the potential energy
surface into many less-intricate basins by employing a local mini-
mization for the structures [24].

Since the potential energy surface is a curve in the multi-dimen-
sional space, it is impossible to directly depict the surface. Here, we
display the transformation diagram of the potential energy surface in
two-dimensional surface in Fig. 1. We may transform the complicated
potential energy surface into less-intricate basins by local minimization
procedure. The transformation not only avoids the unstable transition
state on potential energy surface, but also decreases the energy barrier.
It makes the system freely go through the basin boundaries of potential
energy, therefore simplifies the optimization process.

2.3. Cluster-based niching differential evolution algorithm

2.3.1. Structural optimization of a cluster
The structural optimization of a cluster can be described as follows.

For a cluster consisting of N atoms, the total energy of all atoms is
defined as its potential energy. When the potential energy reaches its
minimum, the search target is the atom coordinates in the three-di-
mensional space.

The objective function of the structural optimization is the potential
energy according to Eq. (1). It can be described as

=f E Rmin min ( )tot (6)

where Etot is the potential energy of a system, R represents the atomic
distance matrix, and is given by
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xi, yi, and zi denote the coordinates of atom i in three-dimensional
space. Since the interatomic distance is relative, it means rij = rji.
Therefore, the distance matrix R is a symmetric matrix, and the diag-
onal values are zero because the distance between an atom and itself is
zero (rii = 0).To make the general multi-populations differential evo-
lution algorithm more effectively during the structural optimization of
cluster, in the base of primal algorithms [25,26], we have proposed a
cluster-based niching differential evolution algorithm by combining the
cluster pool, the niche method, and the differential evolution algorithm
instance, as shown in Fig. 2.

2.3.2. Cluster pool
Essentially, the cluster pool is a collection of many different clusters

(individuals) with the same atomic number. The cluster pool is used to
keep the individual diversity during structural optimization of clusters.
Moreover, it is a great solution for clustering and distinguishing the
clusters. The initialization, clustering, and update of the cluster pool
play a significant role in the whole algorithm. The three procedures
have been described in detail below.

2.3.2.1. Initialization of cluster pool. Consider a cluster consisting of N
atoms, the atom coordinates are represented by three dimensional
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