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Abstract
This paper presents the performance of seven portfolios created using clustering analysis tech-
niques to sort out assets into categories and then applying classical optimization inside every
cluster to select best assets inside each asset category.

The proposed clustering algorithms are tested constructing portfolios and measuring their
performances over a two month dataset of 1-minute asset returns from a sample of 175 assets of
the Russell 1000 R© index. A three-week sliding window is used for model calibration, leaving an
out of sample period of five weeks for testing. Model calibration is done weekly. Three different
rebalancing periods are tested: every 1, 2 and 4 hours. The results show that all clustering
algorithms produce more stable portfolios with similar volatility. In this sense, the portfolios
volatilities generated by the clustering algorithms are smaller when compare to the portfolio
obtained using classical Mean-Variance Optimization (MVO) over all the dataset. Hierarchical
clustering algorithms achieve the best financial performance obtaining an adequate trade-off
between accumulated financial returns and the risk-adjusted measure, Omega Ratio, during
the out of sample testing period.
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1 Introduction

In finance, portfolio construction or asset allocation is one of the most frequent problems prac-
titioners solve every day. Portfolio Theory by Markovitz [10] introduced the problem faced by
investors on a daily basis, in a framework called mean-variance as an optimization problem,
specifically minimizing portfolio variance at a given level of expected or minimum required re-
turn. Markovitz summarized the solution space using the minimum variance frontier or more
precisely, the positive slope section commonly known as the efficient frontier.
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Markovitz’s framework is presented from two perspectives. Given a portfolio’s expected
variance σp, find the maximum return µp; on the other hand, given a portfolio’s expected
return µp, find the minimum variance σp. The two approaches are consistent. The optimization
problem is built assuming a portfolio consisting of n risky stocks, and positive definite VCV
matrix σ, where VCV is a Variance-Covariance matrix. The objective is to find a weight vector
w that minimizes portfolio’s total variance. This approach is known as the mean-variance
optimization (MVO).

Hence, Markovitz’s portfolio optimization find a global minimum for the following objective
function:

f(w) = V (w, σ) = w′σw (1)

subject to the general constraint, portfolio weights must sum up to one.
This model is commonly associated with the Capital Asset Pricing Model (CAPM) devel-

oped by William Sharpe [14]. This fact partially explained why Harry Markowitz shared the
Nobel Prize in 1990 with Sharpe. However, the two models are used for different purposes by
financial practitioners.

CAPM theory considers Markowitz’s model from a microeconomics perspective to discover
price formation of financial assets. In this model, the central concept is that market portfolio
is uniquely defined. In Markowitz’s model, portfolio optimization depends on expected or
preferred returns and risks. Furthermore, the optimal portfolio is not unique and depends on
investor’s risk aversion. As a consequence, these two models could give two different approaches
to the asset allocation problem. While the CAPM theory is the principal pillar for passive
management, Markowitz’s model is the central technique to start actively managing a portfolio
if a practitioner believes that the information set is not unique or homogeneously spread across
market participants.

Analytically, let us consider a universe of n risky assets. Let µ = E[R] and
∑

= E[(R −
µ)(R−µ)T ] be the vector of expected returns and the asset’s return covariance matrix. Classical
MVO assumes that a portfolio with weights w = (w1, w2, ..., wn)

T of n risky assets is fully
invested, meaning that

∑n
i=1 wi = 1, hence, short sells are not allowed, i.e. w > 0. When we

have n stock prices time series: Sij at time j for security i, the log returns are Rij = ln
Sij

Sij−1
,

then is possible to denote R = (R1, · · · , Rn) the asset returns vector. Portfolio’s return is equal
to R(w) =

∑n
i=1 wiRi. In a matrix form, it is obtained R(w) = wTR, portfolio’s expected

return is:
µ(w) = E[R(w)] = E[wTR] = wTE[R] = wTµ (2)

While its variance is equal to:

σ2(w) =E[(R(w)− µ(w))(R(w)− µ(w))T ]

=E[wTR− wTµ)(wTR− wTµ)T ]

=E[wT (R− µ)(R− µ)Tw]

=wTE[(R− µ)(R− µ)T ]w

=wT
∑

w

(3)

On Figure 1, we have simulated 500 portfolios, with n=4 securities, and 1,000 observations
for each asset. It is possible to see the minimum variance frontier, shown by the dotted green
line, the positively sloped segment contains all the optimum portfolios for a given level of desired
risk.
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{diego.leon, javier.sandoval}@uexternado.edu.co
2 Universidad Nacional de Colombia, Bogotá, Colombia
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