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a b s t r a c t

Multivariate data modelling aims to predict unknown function values through an estab-
lished mathematical model. It is essential to construct an analytical structure using the
given set of high dimensional data points with corresponding function values. The level of
multivariance directly affects the modelling process. Increase in the number of indepen-
dent variables makes the standard numerical methods incapable of obtaining the sought
analytical structure. This work aims to overcome the difficulties of high multivariance
and to improve the modelling quality by carrying out two main steps: data clustering
and data partitioning. Data clustering step deals with dividing the whole problem domain
into several clusters by performing k-means clustering algorithm. Data partitioning step
performs the Enhanced Multivariance Product Representation method to partition the
high dimensional data set of each cluster. The analytical structure is obtained through the
partitioned data for each cluster and can be used to predict the unknown function values.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Estimating the tendency of a multivariate system with a large number of independent variables is an important task in
many research areas. Multivariate data modelling is used to describe the behaviour of multivariate systems. In this study, it
is assumed that a high dimensional data set and the corresponding function values are given and it is expected to predict
unknown function values. For this purpose, a mathematical model is established by constructing an analytical structure.

In many cases, there are many independent variables (features) and data points (nodes) to model the considered
problem. Increase in multivariance causes difficulties to generate an analytical structure. Therefore, scientists mostly prefer
to use divide-and-conquer algorithms. The Enhanced Multivariance Product Representation (EMPR) method is one of
these algorithms [14,16,12]. EMPR partitions the high dimensional data into univariate, bivariate and higher variate data
sets [13,15]. This process is called data partitioning and overcomes the difficulties coming from high multivariance since it
is easier to construct an analytical structure using univariate and bivariate data sets instead of a multivariate data set.

This work aims to offer a new hybrid algorithm with two main steps; data clustering and data partitioning. The first step
of the algorithm is to implement a clustering method. Many clusters, having nodes with very similar characteristics, can
be generated in this way. K-means clustering algorithm, which is very popular for cluster analysis in data mining, is used
to generate the clusters [4,2,8,10,6,9]. The algorithm is also used in solving multidimensional engineering problems [7,18].
K-means partitions m observations into k clusters. The algorithm assigns an observation to the nearest cluster by distance.
Euclidean distance is used to determine the nearest cluster to the considered observation. Data clustering in the hybrid
algorithm offered in this study is implemented using k-means with Euclidean distance metric.

The second step is to partition the multivariate data set of each cluster using the EMPR method and construct an
analytical model for each cluster through the partitioned data sets. EMPR has a finite expansion to represent a multivariate
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structure. This expansion has a number of components composed of a constant term, univariate terms, bivariate terms
and higher variate terms with some special purpose functions called support functions. The support functions provide
flexibility in successfully representing various types of analytical structures. The better the support functions are selected,
the better the representation of high dimensional data through EMPRwill be. Besides, depending on the selection of themost
appropriate support function, less number of components from the EMPR expansion will be utilized [14,15]. This decreases
the computational complexity of the method.

The steps of the offered hybrid algorithm are combined in a single method called ‘‘Clustering EMPR’’. This new method
has some important advantages when it is compared with the other EMPR based methods. Since a clustering algorithm is
used to generate the subdomains, each subdomain consists of data points with similar characteristics. It is better to model
high dimensional data of these subdomains instead of the whole domain. In addition, Clustering EMPR has the ability of
modelling a scattered multivariate data set while the classical EMPR method is only applicable to model high dimensional
data of a full mesh.

The paper is organized as follows. The second section covers the main steps of EMPR. The Clustering EMPR method,
which is the proposed algorithm of this study, is given in the third section while the fourth section includes the numerical
implementations designed to test the performance of our newmethod. The concluding remarks of the work are given in the
last section.

2. Enhanced multivariance product representation

The EMPR method has the following finite expansion used to represent a given multivariate function, f (x1, . . . , xN ), in
terms of some less variate functions:

f (x1, . . . , xN ) = f0
N∏
j=1
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where N is the number of independent variables [14]. The expansion also includes the product of certain univariate
functions, sj(xj), which are called ‘‘support functions’’. The existence of these support functions allows the algorithm to
successfully represent different types of analytical structures such as polynomials with additive, multiplicative, hybrid
natures, exponential functions, and trigonometric functions. The other terms at the right hand side of the expansion are the
orthogonal decomposition components of the multivariate function, f (x1, . . . , xN ) which are called ‘‘EMPR components’’.
The vanishing conditions on these components are given as follows:∫ biℓ
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whereWiℓ

(
xiℓ
)
is a component of a product type weight function. The weight function structure is given as follows

W (x1, . . . , xN ) =

N∏
j=1

Wj(xj) (3)

and the following normalization criteria on the weight function components are defined for simple derivations [13]:∫ bi

ai

dxi Wi(xi) = 1,
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ai

dxi Wi(xi)si(xi)2 = 1, 1 ≤ i ≤ N. (4)

The main step of the method is to uniquely determine the right hand side components of the EMPR expansion. To obtain the
structure of the constant component, f0, an operator including an N-tuple integration under weight and support functions
is defined as follows [13]:

I0f (x1, . . . , xN ) ≡
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