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This paper presents a novel spectral algorithm with additive clustering, designed to identify 
overlapping communities in networks. The algorithm is based on geometric properties 
of the spectrum of the expected adjacency matrix in a random graph model that we 
call stochastic blockmodel with overlap (SBMO). An adaptive version of the algorithm, that 
does not require the knowledge of the number of hidden communities, is proved to 
be consistent under the SBMO when the degrees in the graph are (slightly more than) 
logarithmic. The algorithm is shown to perform well on simulated data and on real-world 
graphs with known overlapping communities.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Many datasets (e.g., social networks, gene regulation networks) take the form of graphs whose structure depends on 
some underlying communities. The commonly accepted definition of a community is that nodes tend to be more densely 
connected within a community than with the rest of the graph. Communities are often hidden in practice and recovering the 
community structure directly from the graph is a key step in the analysis of these datasets. Spectral algorithms are popular 
methods for detecting communities [26], that consist in two phases. First, a spectral embedding is built, where the n nodes 
of the graph are projected onto some low dimensional space generated by well-chosen eigenvectors of some matrix related 
to the graph (e.g., the adjacency matrix or a Laplacian matrix). Then, a clustering algorithm (e.g., k-means or k-median) is 
applied to the n embedded vectors to obtain a partition of the nodes into communities.

It turns out that the structure of many real datasets is better explained by overlapping communities. This is particularly 
true in social networks, in which the neighborhood of any given node is made of several social circles, that naturally overlap 
[19]. Similarly, in co-authorship networks, authors often belong to several scientific communities and in protein–protein 
interaction networks, a given protein may belong to several protein complexes [21]. The communities do not form a partition 
of the graph and new algorithms need to be designed. This paper presents a novel spectral algorithm, called spectral 
algorithm with additive clustering (SAAC). The algorithm consists in a spectral embedding based on the adjacency matrix 
of the graph, coupled with an additive clustering phase designed to find overlapping communities. The proposed algorithm 
does not require the knowledge of the number of communities present in the network, and can thus be qualified as adaptive.
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SAAC belongs to the family of model-based community detection methods, that are motivated by a random graph model 
depending on some underlying set of communities. In the non-overlapping case, spectral methods have been shown to per-
form well under the stochastic block model (SBM), introduced by Holland and Leinhardt [12]. Our algorithm is inspired by 
the simplest possible extension of the SBM to overlapping communities, we refer to as the stochastic blockmodel with over-
laps (SBMO). In the SBMO, each node is associated to a binary membership vector, indicating all the communities to which 
the node belongs. We show that exploiting an additive structure in the SBMO leads to an efficient method for the iden-
tification of overlapping communities. To support this claim, we provide consistency guarantees when the graph is drawn 
under the SBMO, and we show that SAAC exhibit state-of-the-art performance on real datasets for which ground-truth 
communities are known.

The paper is structured as follows. In Section 2, we cast the problem of detecting overlapping communities into that of 
estimating a membership matrix in the SBMO model, introduced therein. In Section 3, we compare the SBMO with alter-
native random graph models proposed in the literature, and review the algorithms inspired by these models. In Section 4, 
we exhibit some properties of the spectrum of the adjacency matrix under SBMO, that motivate the new SAAC algorithm, 
introduced in Section 5, where we also formulate theoretical guarantees for an adaptive version of the algorithm. Section 6
illustrates the performance of SAAC on both real and simulated data and we discuss sparse SBMO in Section 7.

Notation We denote by ||x|| the Euclidean norm of a vector x ∈R
d . For any matrix M ∈R

n×d , we let Mi denote its i-th row 
and M·, j its j-th column. For any S ⊂ {1, . . . , d}, |S| denotes its cardinality and 1S ∈ {0, 1}1×d is a row vector such that 
(1S )1,i = 1{i∈S} . The Frobenius norm of a matrix M ∈R

n×d is

||M||2F =
n∑

i=1

||Mi||2 =
d∑

j=1

||M·, j||2 =
∑

1≤i, j≤n

M2
i, j.

The spectral norm of a symmetric matrix M ∈ R
d×d with eigenvalues λ1, . . . , λd is ||M|| = maxi=1..d |λi|. We denote by SK

the set of permutation of {1, . . . , K } and for σ ∈ SK , by Pσ ∈ R
K×K the permutation matrix associated to σ , defined by 

(Pσ )k,l = δσ(k),l .

2. The stochastic blockmodel with overlaps (SBMO)

2.1. The model

For any symmetric matrix A ∈ [0, 1]n×n , let Â be some random symmetric binary matrix whose entries ( Âi, j)i≤ j are in-
dependent Bernoulli random variables with respective parameters (Ai, j)i≤ j . Then Â is the adjacency matrix of an undirected 
random graph with expected adjacency matrix A. In all the paper, we restrict the hat notation to variables that depend on 
this random graph. For example, the empirical degree of node i observed on the random graph and the expected degree of 
node i are respectively denoted by

d̂i =
n∑

j=1

Âi, j and di =
n∑

j=1

Ai, j.

Similarly, we write D̂ = Diag(d̂i), D = Diag(di), and

d̂max := max
i

n∑
j=1

Âi, j, dmax = max
i

n∑
j=1

Ai, j.

The stochastic block model (SBM) with n nodes and K communities depends on some mapping k : {1, . . . , n} → {1, . . . , K }
that associates nodes to communities and on some symmetric community connectivity matrix B ∈ [0, 1]K×K . In this model, 
two nodes i and j are connected with probability

Ai, j = Bk(i),k( j) = Bk( j),k(i).

Introducing a membership matrix Z ∈ {0, 1}n×K such that Zi,k = 1{k(i)=k} , the expected adjacency matrix can be written

A = Z B Z T .

The stochastic blockmodel with overlap (SBMO) is a slight extension of this model, in which Z is only assumed to be in 
{0, 1}n×K and Zi �= 0 for all i. Compared to the SBM, the rows of the membership matrix Z are no longer constrained to 
have only one non-zero entry. Since these n rows give the communities of the respective n nodes of the graph, this means 
that each node can now belong to several communities. Note that the SBMO yields implicit constraints on B and Z , that 
should satisfy for all i, j ∈ {1, . . . , n} that Zi B Z T

j is smaller than 1.
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