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h i g h l i g h t s

• First paper for clinical trials with normally distributed longitudinal responses that balances efficiency and randomness.
• Design is both covariate and response adaptive.
• Extensions introduced to optimum design theory for multivariate responses.
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a b s t r a c t

Adaptive randomization of the sequential construction of optimum experimental designs
is used to derive biased-coin designs for longitudinal clinical trials with continuous
responses. The designs, coming from a very general rule, target pre-specified allocation
proportions for the ranked treatment effects. Many of the properties of the designs are
similar to those of well-understood designs for univariate responses. A numerical study
illustrates this similarity in a comparison of four designs for longitudinal trials. Designs for
multivariate responses can likewise be found, requiring only the appropriate information
matrix. Some new results in the theory of optimum experimental design for multivariate
responses are presented.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Response-adaptive designs are becoming increasingly popular in phase III clinical trials with sequential entrance of
patients. The ethical objective is to use the accumulating data to skew the allocation in favour of the better treatments,
so ensuring that as few patients as possible receive bad treatments. The advantages of response-adaptive designs are
extolled by Zelen andWei (1995), Hu and Rosenberger (2003) and Rosenberger and Hu (2004). Gallo et al. (2006) provide a
perspective from the pharmaceutical industry.

Our procedure is based on the adaptive randomization of treatment allocations from the sequential construction of
optimum experimental designs. As a consequence, we require optimum designs for multivariate continuous responses that
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provide balance over the prognostic factors that may be included in the estimation of treatment effects. Unfortunately,
the majority of the adaptive designs that have been developed are for a single binary response per patient in the absence of
covariates. Examples include the play-the-winner (PW) design (Zelen, 1969), the randomized play-the-winner (RPW) design
(Wei and Durham, 1978), the success driven design (Durham et al., 1998) and the drop-the-loser (DL) rule (Ivanova, 2003).
Related designs for continuous responses, using non-parametric methods to discretize the problem, include Rosenberger
(1993) and Bandyopadhyay and Biswas (2004).

These designs work well in skewing the allocation in favour of the better treatment, although they are not derived from
any optimality criterion. One form of optimality, for binary responses, consists of minimizing an aspect of behaviour, such
as the total expected number of failures, for a given variance of the estimated treatment difference. Such designs include
those of Rosenberger et al. (2001) and Biswas andMandal (2007) for binary responses. Zhang and Rosenberger (2006, 2007)
and Biswas et al. (2007) find optimum designs for continuous responses.

Several of these procedures have been extended to design in the presence of covariates, giving rise to Covariate Adjusted
Response Adaptive (CARA) designs. For the randomized play-the-winner rule, Bandyopadhyay and Biswas (1999) combined
polytomous covariates with binary responses and Bandyopadhyay and Biswas (2001) incorporated covariates in their
design for continuous responses. Zhang et al. (2007) studied asymptotic properties of CARA designs under widely satisfied
conditions. Optimum biased-coin designs for covariate balance, without response adaptivity, were introduced by Atkinson
(1982). This form of optimality was extended to response-adaptive designs for univariate responses by Atkinson and Biswas
(2005a,b). Rosenberger and Sverdlov (2008) discuss the arguments that have been advanced in the clinical trials literature
for and against treatment allocation rules that provide some balance over covariates, as do Shao et al. (2010).

There is an appreciable literature on the analysis of data from clinical trials when the responses are observed at a series of
monitoring times, for example Everitt and Pickles (2004, Chapters 5–7). Molenberghs et al. (2004) describe data from three
clinical trials of anti-depressants in which the responses can be treated as continuous. Galbraith and Marschner (2002)
provide guidelines for designing non-adaptive longitudinal clinical trials.

By comparison there is very limited literature on the design of adaptive longitudinal trials. Biswas and Dewanji (2004b)
describe a trial of pulsed electro-magnetic field therapy in which each patient was monitored for about 16 weeks. The
original responses in this trial had a complicated multivariate structure, which was ignored in the design. Instead a binary
variable ‘recurrence’ was used. Biswas and Dewanji developed an urn design for longitudinal binary responses, which is
a modification and simple extension of the RPW design where the covariates were ignored. See also Biswas and Dewanji
(2004a,c). Sutradhar et al. (2005) used a similar urn model based design and allowed for the possibility of time-dependent
covariates. Subsequently, Sutradhar and Jowaheer (2006) extended this approach for longitudinal count data. Biswas et al.
(2012) provided an optimum response-adaptive design for longitudinal binary responses. Atkinson and Biswas (2014,
Chapter 5) provide an account of work on response-adaptive designs for longitudinal responses. Further, Huang et al.
(2013) proposed a general framework for longitudinal covariate-adjusted response-adaptive randomization procedures,
and studied the related asymptotic properties.

In contrast, we obtain optimum biased-coin designs for multivariate and longitudinal responses by the extension
of methods for univariate responses. The optimum designs in both cases are functions of the information matrix for
the observations. The model for multivariate data is introduced in Section 2.1. In the rest of Section 2 we explore the
consequences of a general formulation for randomized response-adaptive designs for univariate or multivariate responses.
These designs use optimum design theory to provide covariate balance in a general adaptive rule that skews allocation to
the better treatments, whilst maintaining a controllable degree of randomness. We stress that these results are extremely
general; to apply the rules we merely need to be able to provide the information matrix of the observations. Loss and bias,
used to compare the designs, are presented in Section 3 with the information matrix for longitudinal designs explicitly
presented in Section 4.

Four specific allocation rules are described in Section 5. These include the extension of the rule of Atkinson and Biswas
(2005a), which achieves adaptivity through use of the link function of Bandyopadhyay and Biswas (2001), and our new
rule. We take the particular form of this rule which targets specified proportional allocations to the ranked treatments: in
our numerical example with two treatments, our target is that 80% of patients should be allocated to the unknown better
treatment. This procedure overcomes the instability in early allocations with the link-function based rule that can lead to
imbalance if the trial is stopped early. In our application we apply the results to the particular information pattern and
covariance structure arising with longitudinal responses developed in Section 4. The numerical results are in Section 7.

Two main contributions of our paper are the provision of our general rule and its application to longitudinal trials. In
the form we use here, the design ceases to be response-adaptive once the correct ordering of the treatments has been
established.We can then extend standard results of the effect of randomization on inference (Burman, 1996; Atkinson, 2002)
tomultivariate designs. For longitudinal designswith correlated observationswe define an effective number of observations
that permits calculation of the loss from randomization. This important quantity indicates the average number of patients
on whom information is lost due to a particular randomization rule. Simulations in Section 7 confirm the accuracy of this
definition.

The methods of optimum experimental design are central to our construction of allocation rules. In Appendix A.1
we develop new results on multivariate DA-optimality that allow us to estimate linear combinations of the treatment
effects, such as differences, in the presence of the parameters associated with the prognostic factors over which we are
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