
Uncertainty assessment of porosity and permeability by clustering algorithm
and fuzzy arithmetic

Pedram Masoudi a,b, Tahar Aïfa b,*, Hossein Memarian a, Behzad Tokhmechi c

a Department of Mining Eng., College of Eng., University of Tehran, North Kargar, 1431954378 Tehran, Iran
b G�eosciences-Rennes, CNRS UMR6118, Universit�e de Rennes 1, Bat.15, Campus de Beaulieu, 35042 Rennes Cedex, France
c School of Mining, Petroleum and Geophysics Eng., Shahrood University of Technology, P.O. Box 3619995161, Shahrood, Iran

A R T I C L E I N F O

Keywords:
Porosity
Permeability
Uncertainty projection
Fuzzy arithmetic
Fuzzy power
Clustering

A B S T R A C T

A hybrid clustering-fuzzy arithmetic algorithm is here proposed, which uses cluster analysis to quantify porosity
uncertainty, then the uncertainty is projected to the irreducible water saturation and permeability by the means of
fuzzy arithmetic. The proposed method is applied to five wells of the carbonate Sarvak Formation, in an Iranian
onshore oil-field. First, cluster analysis is applied to the porosity logs including neutron porosity, bulk density and
sonic transit time. The uncertainty range of porosity is defined by the range of neutron porosity in each cluster. In
order to estimate the core porosity, neutron porosity is calibrated to the core porosity in each cluster. Due to the
average of error, the calibrated clustering-based porosity is at least 33% more accurate than the conventional
methods. Based on the generalization ability of porosity estimators, a homogeneous porosity zone is determined
northward. Irreducible water saturation, analyzed by the proposed method, has less overestimation, compared to
the conventional evaluation of irreducible water saturation. Permeability fuzzy number is compatible with core
tests, except in well S1, which is drilled in a location, compressed by two stress regimes (N-S and NW-SE). Two
criteria are defined for validating the fuzzy numbers by core data: (i) Crit1 finds an average α-cut of core values;
(ii) Crit2 finds the best α-cut to optimize uncertainty interval of the fuzzy number. The α > 0.90 is the most
appropriate for porosity and permeability studies.

1. Introduction

Porosity and permeability (porperm) of reservoir rocks are either
measured (in the cored intervals) or estimated (in the logged intervals).
Since the estimation is an indirect method, the results are uncertain. This
uncertainty is effective on the results of field-scale studies, e.g. produc-
tion forecast (Riva et al., 2010). Each porperm investigation belongs to
one or two of the following categories: (i) Deterministic approach (up to
about 1997): The primary porperm researches were about to find the
best-fit experimental model for estimation, which ignores the uncer-
tainty. (ii) Intelligent studies (since about 1997), which could be con-
ducted either in deterministic or probabilistic approaches. (iii)
Probabilistic approach (since about 2004), which assesses the porperm
uncertainty by Probability Distribution Function (PDF).

Archie (1952) was one of the first researchers who investigated on
petrophysical parameters (porperm, water saturations, resistivity and
formation factor), and developed the empirical relations between them.
Timur (1968) explored the relationships between porperm and

irreducible water saturation, which is introduced and used in this article.
For permeability estimation, Turban and Robert (1989) proposed using
production equation and formation pressure. It is reported that perme-
ability estimation in hydraulic units separately, improves the results
(Altunbay et al., 1997).

In the recent decades, the intelligent methods are incorporated in
petrophysical evaluations. The fuzzy theory was hired in studying rock
facies, fractures, porperm and water saturation estimation (Abdulazeez
et al., 2007; Cuddy, 1997, 2000). Fang and Chen (1997) proposed a
hybrid method for predicting porperm of sandstones, using cluster
analysis and fuzzy arithmetic. In this method, the inputs are composi-
tional and textural parameters: grain size, Trask (1930) sorting coeffi-
cient, relative amounts of ductile grains, rigid grains and detrital matrix.
The output data (porperm) are clustered using fuzzy c-means (FCM) al-
gorithm. FCM provides the degree of membership of the inputs to each
cluster prototype. Using fuzzy reasoning, the fuzzy rules are generated
between the inputs and the outputs, which will be used in a fuzzy
inference. Clustering is also used for studying productive zones (Moradi
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et al., 2015), saturation or permeability variations (Masoudi et al., 2016).
The permeability determination was enhanced when the data was

clustered by principal component analysis and cluster analysis, then the
fuzzy logic model was applied to each cluster (Ibrahim Sami and Adel,
2010). The Artificial Neural Network (ANN) was used in porperm esti-
mation, showing high precision in the north sea (Helle et al., 2001). For
porperm estimation, the ANN is much more accurate than the
regression-based methods (Jalali Lichaei and Nabi Bidhendi, 2006).
Since the histogram of permeability has lognormal distribution, it has to
be transformed to the normal (Gaussian) distribution for a successful
ANN-based permeability estimation (Masoudi et al., 2011). Aïfa et al.
(2014) reported that application of neural network and fuzzy logic pre-
diction techniques showed correlation coefficients of >0.91. However
using a neuro-fuzzy model, the correlation coefficients increased to
>0.98 and > 0.96 for porosity and permeability estimations, respectively.

Kharraa et al. (2013) investigated the porosity distribution using
Nuclear Magnetic Resonance (NMR) logging. In the dolomitic formation,
neutron-density porosity is the most accurate method. But in clean
limestones, NMR is the most accurate tool for porosity study. Kharraa
et al. (2013) also discussed that differences between the porosity de-
terminations originate from the differences in their tools mechanisms. As
an example, the effective porosity is measured in the core laboratory,
while the total porosity is estimated by neutron porosity well-log. By
NMR well-log, the distribution of pore sizes micro (smaller than 0.5 μm),
meso (between 0.5 and 5 μm) and macro (larger than 5 μm) could be
determined, separately. Or using Computerized Tomography (CT), the
pore shapes and their connections in the core samples can be visualized.

In a recent publication, factor analysis was performed on NMR T2 dis-
tribution to estimate free-water filled and bound-fluid-filled porosities (Li
and Misra, 2017).

Volumetric Laminated Sand Analysis (VLSA) is a probabilistic method
for evaluating hydrocarbon pore-thickness, when the beds are thinner
than 1 ft (30 cm). The method uses Monte-Carlo simulation for gener-
ating realizations in the intervals of 47.6 ft (14.5 m). 400% improvement
in accuracy of hydrocarbon pore-thickness estimation is reported by this
method (Passey et al., 2004, 2006). In this article, VLSA is introduced and
used as a base method for validating the outputs of the proposed method.
Bachrach (2006) concluded that incorporating shear impedance reduced
the porosity uncertainty by 15%. He used standard deviation as a mea-
sure of uncertainty of porosity and water saturation estimations.

The uncertainty is a property, so it should be quantified (not to be
removed). It is often desired to have the least uncertainty but should not
be minimized, however we try to minimize the error. There are many
definitions and categorizations of the uncertainty in the literature. Fang
and Chen (1990) categorized it into vagueness (equivalent to fuzziness,
haziness, cloudiness, unclearness and sharplessness) and ambiguity
(non-specifity, diversity, divergence, generality, variety and
one-to-many). In the well-logging, the uncertainty type is ambiguity
since an average value is attributed to a volume of investigation (di-
versity, generality or one-to-many). The volumetric Nyquist frequency is
formulated for assessing this ambiguity quickly (Masoudi et al., 2017b),
and the Dempster-Shafer Theory of evidences was used to quantify the
ambiguity for whole the well-log (Masoudi et al., 2017a). The uncer-
tainty categorizations are not yet accepted universally. So in this paper,

Nomenclature

αc α of core porosity
αref Reference α
φDN Estimated porosity by density-neutron (shaly sand)

cross-plot

φðqÞ
DN Estimated porosity by quick look method of density-

neutron cross-plot
φe Effective porosity
φLC Estimated porosity by the method of complex lithology
φlog Estimated porosity by a one-log porosity method (neutron

or density)
φNPHI Estimated porosity by one-log porosity method, based on

neutron porosity
φRHOB Estimated porosity by one-log porosity method, based on

bulk density
αA α-cut of the fuzzy membership function A
ANN Artificial neuron network
Ck Constant of Wylie-Rose relation
CM Consistency measure
Crit1(2) First (second) criterion
CT Computer tomography
DT Sonic transit time
FCM Fuzzy c-means
FN Fuzzy number
fr Fraction
GG Gath-Geva
GK Gustafson-Kessel
GR Gamma ray
Intave Average of cluster intervals
J Performance index
kBuckles Buckles number
kWR Estimated permeability by Wylie-Rose relation
KM k-means
LLD Deep laterolog

log Calculated petrophysical well-log
logh Petrophysical value of hydrocarbon
logma Petrophysical value of matrix
logðsÞ Scaled petrophyical value (well-log)
logsh Petrophysical value of shale
logw Petrophysical value of water
m A parameter in Wylie-Rose relation
mf Fuzzifier
ms A parameter related to irreducible water saturation
mD Millidarcy
n A parameter in Wylie-Rose relation
ℕc Sets of cluster number
ℕn Sets of data points
NMR Nuclear magnetic resonance
NPHI Neutron porosity
NPHIðsÞ Scaled NPHI

NPHIðsÞsh Scaled NPHI value at the line of pure shale
P Fuzzy partition
PDF Probability distribution function
PM Precision measure
RHOB Bulk density
RHOBðsÞ Scaled RHOB

RHOBðsÞ
sh Scaled RHOB value at the line of pure shale

RMSE Root mean square error
Sw Water saturation
Swir Irreducible water saturation
SXO Water saturation in invaded zone, in fraction
SSE Sum square error
ten% Unit of order, e.g. 56% ¼ 5.6 ten%

vðtÞi Cluster center of the ith cluster at the tth iteration
Vsh Shale volume, in fraction
VLSA Volumetric laminated sand analysis
VRmf Vertical resolution membership function
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