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In this paper we introduce and study Graded Strategy Logic (GSL), an extension of Strategy 
Logic (SL) with graded quantifiers. SL is a powerful formalism that allows to describe useful 
game concepts in multi-agent settings by explicitly quantifying over strategies treated as 
first-order citizens. In GSL, by means of the existential construct 〈 〈x ≥ g〉 〉ϕ, one can enforce 
that there exist at least g strategies x satisfying ϕ. Dually, via the universal construct
�x < g�ϕ, one can ensure that all but less than g strategies x satisfy ϕ.
Strategies in GSL are counted semantically. This means that strategies inducing the same 
outcome, even though looking different, are counted as one. While this interpretation is 
natural, it requires a suitable machinery to allow for such a counting, as we do. Precisely, 
we introduce a non-trivial equivalence relation over strategy profiles based on the strategic 
behavior they induce.
To give an evidence of GSL usability, we investigate some basic questions about the Vanilla
GSL[1g] fragment, that is the vanilla restriction of the well-studied One-Goal Strategy Logic
fragment of SL augmented with graded strategy quantifiers. We show that the model-
checking problem for this logic is PTime-complete. We also report on some positive results 
about the determinacy.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Formal methods in system design are a renowned story of success. Breakthrough contributions in this field comprise model 
checking [1,2] and temporal logics such as LTL [3], CTL [1], CTL� [4], and the like. First applications of these methodologies 
involved closed systems [5] generally analyzing whether a Kripke structure, modeling the system, meets a temporal logic 
formula, specifying the desired behavior [6]. In the years several algorithms have been proposed in this setting and some 
implemented as tools [7]. Nevertheless these approaches turn to be useless when applied to open systems [5]. The latter are 
characterized, in the simplest situation, by an ongoing interaction with an external environment on which the whole system 
behavior deeply relies. To be able to deal with the unpredictability of the environment, extensions of the basic verification 
techniques have come out. A first attempt worth of note is module checking where a Kripke structure is replaced by a specific 
two-player arena. Module checking has been first introduced in [8,9]. In the last decade this methodology has been fruitfully 
extended in several directions (see [10–12] for some related works).

Starting from the study of module checking, researchers have looked for logics focusing on the strategic behavior of 
players in multi-agent systems [13]. One of the most important developments in this field is Alternating-Time Temporal Logic
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(ATL� , for short), introduced by Alur, Henzinger, and Kupferman [13]. This logic allows to reason about strategies of agents 
having the satisfaction of temporal goals as the payoff criterion. Formally, it is obtained as a generalization of CTL� , in which 
the existential E and the universal A path quantifiers are replaced with strategic modalities of the form 〈 〈A〉 〉 and �A�, where 
A is a set of agents. Strategic modalities over agent teams are used to describe cooperation and competition among them in 
order to achieve certain goals. In particular, these modalities express selective quantifications over those paths that are the 
result of infinite interaction between a coalition and its complement.

Despite its expressiveness, ATL� suffers from the strong limitation that strategies are treated only implicitly in the se-
mantics of its modalities. This restriction makes the logic less suited to formalize several important solution concepts, such 
as Nash Equilibrium. These considerations led to the introduction of Strategy Logic (SL, for short) [14,15], a more powerful 
formalism for strategic reasoning. As a key aspect, SL treats strategies as first-order objects that can be determined by means 
of the existential 〈 〈x〉 〉 and universal �x� quantifiers, which can be respectively read as “there exists a strategy x” and “for all 
strategies x”. Remarkably, a strategy in SL is a generic conditional plan that at each step prescribes an action on the base of 
the history of the play. Such a plan is not intrinsically glued to a specific agent but an explicit binding operator (a, x) allows 
to link an agent a to the strategy associated with a variable x.

A common aspect about all logics mentioned above is that quantifications are either existential or universal. Per contra, 
there are several real scenarios in which “more precise” quantifications are crucially needed (see [16,17], for an argumenta-
tion). This has attracted the interest of the formal verification community to graded modalities. These have been first studied 
in classic modal logic [18] and then exported to the field of knowledge representation to allow quantitative bounds on the 
set of individuals satisfying specific properties. Specifically, they are counting quantifiers in first-order logics [19], number 
restrictions in description logics [20–23] and numerical constraints in query languages [24].

First applications of graded modalities in formal verification concern closed systems. In [25], graded μCalculus has been 
introduced in order to express statements about a given number of immediately accessible worlds. Successively in [26–28,
16], the notion of graded modalities have been extended to deal with number of paths. Among the others graded CTL (GCTL, 
for short) has been introduced with a suitable axiomatization of counting [16]. This work has been recently extended in [29]
to address GCTL� , a graded extension of CTL� .

In open systems verification, we are aware of just two orthogonal approaches in which graded modalities have been 
investigated, but in a very restricted form: module checking for graded μCalculus [30] and an extension of ATL with 
graded path modalities (GATL, for short) [31]. In particular, the former involves a counting of one-step moves among two 
agents, the latter allows for a more restricted counting on the histories of the game, but in a multi-player setting. Both 
approaches suffer of several limitations. First, not surprisingly, they cannot express powerful game reasoning due to the 
limitation of the underlying logic. Second, it is based on a very rigid and restricted counting of strategies.

In this paper, we take a different approach by formally introducing a machinery to count strategies in a multi-agent 
setting and use it upon the powerful framework of SL. Precisely, we introduce and study Graded Strategy Logic (GSL) which 
extends SL with the existential 〈 〈x ≥ g〉 〉ϕ and universal �x < g�ϕ graded strategy quantifiers. They allow to express that 
there are at least g or all but less than g strategies x satisfying ϕ , respectively. As in SL, we use the binding operator to 
associate these strategies to agents.

As far as the counting of strategies is concerned, one of the main difficulties resides on the fact that some strategies, 
although looking different, produce the same outcome and therefore have to be counted as one. To overcome this problem 
while preserving a correct counting over paths for the underlining logic SL, we introduce a suitable equivalence relation 
over profiles based on the strategic behavior they induce. This is by its own an important contribution of this paper.

To show the applicability of GSL we investigate basic game-theoretic and verification questions over a powerful fragment 
of GSL. Recall that model checking is non-elementary-complete for SL and this has spurred researchers to investigate frag-
ments of the logic for practical applications. Here, we concentrate on the vanilla version of the SL[1g] fragment of SL. We 
recall that SL[1g] was introduced in [32]. As for ATL, vanilla SL[1g] (for the first time introduced here) requires that two suc-
cessive temporal operators in a formula are always interleaved by a strategy quantifier. We prove that the model-checking 
problem for this logic is PTime-complete. We also show positive results about the determinacy of turn-based games.

GSL can have useful applications in several multi-agent game scenarios. For example, in safety-critical systems, it may 
be worth knowing whether a controller agent has a redundant winning strategy to play in case of some fault. Having more 
than a strategy may increase the chances for a success [33], i.e., if a strategy fails for any reason, it is possible to apply the 
others.

Such a redundancy can easily be expressed in GSL by requiring that at least two different strategies exist for the achieve-
ment of the safety goal. The universal graded strategy quantifier may turn useful to grade the “security” of a system. For 
example, one can check whether preventing the use of at most k strategies, the remaining ones are all winning. In a network 
this may correspond to prevent some attacks while leaving the communication open.

Outline The sequel of the paper is structured as follows. Section 2 introduces GSL and provides some preliminaries. Sec-
tion 3 introduces, by means of axioms, the equivalence relation used to count strategies. Section 4 shows how to transform 
a game from concurrent to turn-based. Section 5 and Section 6 address the determinacy and the model-checking problem 
for Vanilla GSL[1g]. Finally we conclude in Section 7 with some discussions and future work.
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