Excessive software development: Practices and penalties

Ofira Shmueli ®, Boaz Ronen

Available online at www.sciencedirect.com

ScienceDirect

International Journal of Project Management 35 (2017) 1327

International Journal of

Project
Management

www.elsevier.com/locate/ijproman

CrossMark

b,%x

Ben-Gurion University of the Negev, Industrial Engineering and Management Department, Israel
° Tel Aviv University, Faculty of Management, Israel

Received 19 October 2015; received in revised form 25 September 2016; accepted 3 October 2016

Abstract

This study focuses on the tendency to develop software excessively, above and beyond need or available development resources. The literature
pays little attention to this issue, overlooking its crucial impact and penalties. Terms used in reference to excessive software development practices
include over-requirement, over-specification, over-design, gold-plating, bells-and-whistles, feature creep, scope creep, requirements creep,
featuritis, scope overload and over-scoping. Some of these terms share the same meaning, some overlap, some refer to the development phase, and
some to the final system. Via a systematic literature search, we first demonstrate the poor state of research about excessive software development
practices in the information systems and project management areas. Then, we suggest a framework consolidating the problems associated with
excessive software development in three ‘beyond’ categories (beyond needs, beyond resources, beyond plans), describe and analyze their causes,

consequences, boundaries and overlapping zones. Finally, we discuss the findings and present directions for future research.

© 2016 Elsevier Ltd, APM and IPMA. All rights reserved.

Keywords: Software development; Project management; Over-requirement; Over-specification; Over-design; Gold-plating; Bells-and-whistles; Mission creep;
Feature creep; Scope creep; Requirements creep; Featuritis; Scope overload; Over-scoping

1. Introduction

Over four decades ago, Brooks (1975) observed that the
most difficult part of developing a software system is deciding
precisely what to build. He further noted that, if done
incorrectly, no other part of the development work cripples
the resulting system as much or is more difficult to undo later.
This observation, which has been repeatedly acknowledged
over the years by academic research and practical experience,
still holds today.

Catering to user, market or organizational needs' in software
development projects has a major impact on project success. Not
meeting just the right needs is one of the reasons for project
failure (Charette, 2005; Keil et al., 1998), perhaps even the most
crucial one (Kliem, 2000; Longstaff et al., 2000). Software

* Corresponding author.
E-mail addresses: ofirash@post.bgu.ac.il (O. Shmueli),
boazr@post.tau.ac.il (B. Ronen).
! See Appendix A for explanations of the software engineering terms.

http://dx.doi.org/10.1016/j.ijproman.2016.10.002
0263-7863/00/© 2016 Elsevier Ltd, APM and IPMA. All rights reserved.

scoping is a critical project process (Zwikael and Smyrk, 2011)
and project success is sensitive to the defined scope (Cano and
Lidén, 2011). Although wrong scope definition refers to both
scoping under and over the actual needs (Bjarnason et al., 2012;
Buschmann, 2009; Zwikael and Smyrk, 2011), excessively
loading the scope is much more common (Bjarnason et al.,
2012; Boehm, 2006; Karlsson et al., 2007), and thus stands at the
focus of this work. Exceeding the right scope expands project
size, which is a major risk dimension in software development
projects (McFarlan, 1981; Zmud, 1980) in the sense that project
risk is an increasing function of project size (Barki et al., 1993;
Glass, 1998; Houston et al., 2001; Maguire, 2002). In comparison
to smaller projects, large-scale projects fail three to five times
more often (Charette, 2005), are much more prone to unexpected
colossal events including even bringing an organization down
(Flyvbjerg and Budzier, 2011), and have a 65% probability of
being stopped and abandoned (Jones, 2007).

This study relates mainly to traditional plan-based software
development methodologies, such as the waterfall approach.
Current agile techniques claim to resolve problems associated

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijproman.2016.10.002&domain=pdf
mailto:
mailto:
http://dx.doi.org/10.1016/j.ijproman.2016.10.002
http://dx.doi.org/10.1016/j.ijproman.2016.10.002
http://dx.doi.org/10.1016/j.ijproman.2016.10.002
http://dx.doi.org/10.1016/j.ijproman.2016.10.002
Journal logo
Imprint logo

14 O. Shmueli, B. Ronen / International Journal of Project Management 35 (2017) 13-27

with plan-based methodologies but the debate on which
methodology is more effective (Beck and Boehm, 2003;
DeMarco and Boehm, 2002), especially in the requirements
engineering (RE) context still exists (Dyba and Dingsyr, 2009;
Inayat et al., 2015a). Critics of agile techniques claim that agile
requirements engineering concepts lead to neglecting non-
functional requirements related to performance, security, and
architecture (Cao and Ramesh, 2008; Dyba and Dingsyr, 2008;
Maiden and Jones, 2010). Although studies that describe
requirements engineering practices in an agile context address
some of these problems (Bakalova and Daneva, 2011; Lucia
and Qusef, 2010), knowledge about the solutions that agile
brings to RE is fragmented and whether while introducing
solutions to these problems new challenges are introduced is
yet to be examined (Inayat et al., 2015a). Accordingly, recent
studies claim that this field is still immature and needs further
research on agile RE and its real-world impact and applications
(Maiden and Jones, 2010; Inayat et al., 2015a, 2015b).
However, the understanding that no size fits all (Boehm and
Lane, 2010a) and that both approaches have their merits and
excel under appropriate conditions, suggests more balanced
hybrid approaches that integrate both into the right mix for each
specific project (Boehm and Turner, 2003, 2005; Boehm et al.,
2010; Dyba and Dingsyr, 2008, 2009).

The risky practice of expanding a software project to include
excessive functionality and capabilities® is referred to in the
literature by a variety of partially overlapping terms, including:
over-requirement, over-specification, over-design, gold-plating,
bells-and-whistles, mission creep, feature creep, scope creep,
requirements creep, featuritis, scope overload and over-scoping.

While all these terms relate overall to excessive software
development practices, as elaborated upon in the next sections,
there are some differences, depending, for example, on the
project development phase in which each practice takes place,
whether requirements® added under the excessive development
practice can be implemented within the project constraints or not
and whether the added requirements are essential, just optional or
completely unnecessary. However, once extra features are
introduced into a project excessively, they are seldom eliminated
regardless of necessity or of how and during which project phase
they are included within the scope (Dominus, 2006; Wetherbe,
1991).

Excessive software development practices are considered risky
practices. They impose a variety of penalties on project outcome,
with many negative consequences on project schedule, quality and
costs (Bernstein, 2012; Bjarnason et al., 2010; Buschmann, 2009,
2010; Coman and Ronen, 2010; Ronen et al., 2012). While some
studies refer to a change in requirements of about 25% on average
(Jones, 1994; McConnell, 1996), others present an average total
volume growth of 14% to 25% for software projects in various
domains, with a monthly rate of change in requirements of 1% to
3.5% (Choi and Bae, 2009; Jones, 1996). Jones (1996), however,
emphasizes that these numbers can be misleading since the
maximum growth rate observed in many cases exceeded 100%.

2 See Appendix A for explanations of the software engineering terms.
3 See Appendix A for explanations of the software engineering terms.

Coman and Ronen (2009b) ascribe over 30% of the features in
financial software applications serving such organizations as
banks or insurance companies to excessive software development.
They claim that over 25% of the software development efforts in
R&D organizations are devoted to issues and activities that do not
add value (Coman and Ronen, 2010). Considering the conserva-
tive estimate of 25% superfluous scope (Battles et al., 1996;
Coman and Ronen, 2010), one must wonder what the costs of
excessive software development amount to in terms of budget and
schedule overruns as well as damage to system quality and
integrity. According to McConnell (1996), due to the multiplica-
tive costs associated with doing work downstream, these costs
probably amount to much more than 25%. Using the COCOMO I1
estimation model (Boehm et al., 2000a, 2000b), which considers
the exponential nature of the development effort, the estimated
cost increment might indeed be even higher than the scope
increment, at least with respect to the development activity.
Non-development project activities, such as preparing infrastruc-
tures or training users, are affected by size and content and are
expanded as well due to excessive software development
practices. To show that costs can be reduced by eliminating
excess, Battles et al. (1996) provide an example of an electric
utility which succeeded in reducing the software development
budget by 30% without reducing performance by avoiding
unnecessary upgrades and non-critical work. Ronen et al. (2012)
refer to a cellular phone service provider that by adopting the 25/
25 rule in software development, i.e., terminating 25% of the
projects and eliminating 25% of the features® in the remaining
projects, improved the project completion rate and development
pace.

Although it is thus extremely important to explore the risky
excessive software development practices, enhance the knowl-
edge and awareness of them, and to recommend remedies for their
mitigation, a literature search reveals only thin, spare, fragmented
and scattered research on these issues. This work makes three
main contributions to this challenge. First, via a systematic
literature search, focused on title, abstract and keywords of articles
in top-rated journals, it unravels the small amount of current
relevant research in these leading journals. Second, it gathers and
elaborates upon the different terms associated with excessive
software development practices and provides a comprehensive
picture regarding their nature, causes and consequences. Third,
based on the findings and analysis presented here it proposes a
research agenda for future research in several directions.

The rest of this paper is dedicated to reviewing the various
excessive software development practices and to exposing the
current poor state of relevant research. Section 2, first identifies
the various terms that relate to excessive software development
practices and then presents the findings of a systematic
literature search for relevant research. Section 3 consolidates
the various excessive software development practices in three
‘beyond’ categories, and analyzes their nature, causes, and
boundaries. Finally, Section 4 discusses the findings, conclu-
sions and implications and proposes a research agenda. A
glossary of basic software engineering terms used here is

4 See Appendix A for explanations of the software engineering terms.

ISIf)rticles el Y 20 6La5 s 3l OISl ¥
Olpl (pawasd DYl gz 5o Ve 00 Az 5 ddes 36kl Ol ¥/
auass daz 3 Gl Gy V

Wi Ol3a 9 £aoge o I rals 9oy T 55 g OISl V/

s ,a Jol domieo ¥ O, 55l 0lsel v/

ol guae sla oLl Al b ,mml csls p oKl V7

N s ls 5l e i (560 sglils V7

Sl 5,:K8) Kiadigh o Sl (5300 0,00 b 25 ol Sleiiy ¥/

https://isiarticles.com/article/151016

