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A B S T R A C T

This work presents a Branch-and-Price algorithm for solving a compressor scheduling problem with applications
in oil production. The problem consists in defining a set of compressors to be installed for supplying the gas-lift
demand of oil wells while minimizing the associated costs. Owing to the non-convex nature of the objective
function, two piecewise-linear formulations are tested in the pricing subproblem, which is solved with a two-
phase strategy. Also, two branching strategies are proposed based on the original problem variables, and a
specific rule is created for solving the master problem as an integer program for obtaining feasible solutions.
Experimental results are reported for three sets of instances, for which the branch-and-price algorithm obtained
more optimal solutions, and spent less time on average than the CPLEX solver applied to the piecewise-linear
formulation. Furthermore, for the solution of the largest instances within a limited computational time, the
proposed branch-and-price algorithm found good feasible solutions, outperforming CPLEX.

1. Introduction

As the production of hydrocarbons from an oil field progresses in
time, the reservoir internal pressure decreases to a point that is not
sufficiently high to lift hydrocarbons to the surface or obtain profitable
production levels. In this case, some artificial lifting method as the
continuous gas-lift, or simply gas-lift, is needed. Fig. 1 illustrates the
production process in a well operated with gas-lift. In this technique,
natural gas is compressed by compressors and injected at the bottom of
the production tubing at a certain rate and pressure, flowing into this
tube through valves. The gas blends with the hydrocarbons, making it
less dense. Consequently, the weight of the fluid column is reduced and
the blend can flow to the surface.

Gas-lift is a widely used technique due to its robustness, wide range
of operating conditions, and relatively low installation and main-
tenance costs (Hamedi & Khamehchi, 2012). An oil recovery plan is
needed to coordinate the gas-lift operation of an oil field. With the aim
of maximizing cumulative production, a recovery plan establishes the
gas rate and injection pressure for the production wells over the life-
span of the reservoir. However, these injection rates can be over-
estimated to hedge against unpredicted events such as compressor
failures or dynamic changes in the reservoir conditions. If a compressor
produces more gas than the total demand from the wells it supplies, the
excess must be exported (giving it another destination) or burned in the
gas flare. Moreover, energy losses are incurred when the output pres-
sure from a compressor is reduced before injection, invariably

increasing production costs. These issues give rise to the problem of
allocating a set of compressors to meet the demands of a set of wells.

The Compressor Scheduling Problem (CSP) was first addressed by
Camponogara, Castro, and Plucenio (2007) and formulated as an ex-
tension of the Single-source Capacitated Facility Location Problem
(SSCFLP) with two capacities. That work is characterized by a non-
convex objective function and nonlinear constraints, for which a pie-
cewise-linear formulation based on convex combination was proposed
to solve the problem with an off-the-shelf mixed-integer linear pro-
gramming solver. Also, a preliminary polyhedral study was performed
for obtaining a compact formulation with valid inequalities based on
knapsack cover inequalities. Camponogara, de Castro, Plucenio, and
Pagano (2011) extends the work of Camponogara et al. (2007) and
compare the nonlinear and the piecewise-linear formulations, showing
that the latter was more effective in reducing the operating costs. Also,
exact and approximate lifting procedures and exact and heuristic se-
paration procedures were proposed. The results demonstrated that the
use of valid inequalities can reduce computational time and memory
significantly.

A revised formulation for CSP is proposed in Camponogara, Nazari,
and Meneses (2012). The nonlinear constraints were replaced by a fa-
mily of linear inequalities. The new formulation is tighter than the
previous one, and the computational results demonstrate very ex-
pressive gains concerning computational time. Also, the polyhedral
dimensionality was established for some conditions that depend on
problem parameters, and cover valid inequalities were proposed.
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However, the gains with valid inequalities are less significant with the
new formulation.

In Camponogara and Plucenio (2008) a column generation algo-
rithm based on the Dantzig-Wolfe decomposition of a piecewise-linear
formulation is proposed to yield a lower bound for the CSP problem.
Friske, Buriol, and Camponogara (2015) adapted the column genera-
tion algorithm of Camponogara and Plucenio (2008) for the revised
model of Camponogara et al. (2012). Computational experiments are
reported to evaluate the lower bound quality provided by the column
generation algorithm. With some modifications, the column generation
algorithm was also tested under the single-source capacitated facility
location problem.

In this work, we propose a Branch-and-Price algorithm (B&P) for
solving the CSP with a piecewise-linear objective function.
Experimental results are provided for three sets of instances, and CPLEX
is applied to the same instances for comparison purposes. The experi-
mental results demonstrate that the proposed B&P outperforms CPLEX
in most of the instances, with respect to computational time and solu-
tion quality.

The remainder of this work is organized as follows. Section 2 pre-
sents the problem definition and its mathematical formulation. Section
3 presents the column generation algorithm for the CSP, including the
piecewise-linear formulations for the pricing subproblem. Section 4
presents the proposed branch-and-price algorithm. Section 5 shows
computational experiments. Finally, Section 6 presents the conclusions
and future works.

2. Problem definition

In the Compressor Scheduling Problem, each well ∈i M has a de-
mand of gas-lift rate qi

w and pressure pi
w for achieving the production

levels defined by the recovery plan. The wells demand is supplied by
gas-lift compressors, which are connected to the wells through pipe-
lines. Each compressor ∈j N has a different operational range, such
that the gas-lift compressing rate qj

c can vary between qj
c,min and qj

c,max.
The pressure of gas-lift p q( )j j

c c is a nonlinear function of the gas rate
produced by compressor j and should be greater or equal to pi

w of each
supplied well plus the loss of pressure lij along the pipelines. Each
compressor can supply one or more wells, and a well can be supplied by
just one compressor. The activation of a compressor j incurs in a fixed
cost cj while supplying a well i has a maintenance cost eij. An operating
cost h q( )j j

c c is accounted for each activated compressor j, which is a
product of the per unit of energy cost d q,j j

c, and p q( )j j
c c . The Compressor

Scheduling Problem consists in defining, among a set of gas-lift com-
pressors, which ones will be installed (or just activated) and how the
compressors will supply gas-lift to the wells at their required rates and

pressures, while minimizing the mentioned costs.
For convenience, Table 1 gives the notation used in the problem

formulation. The CSP can be formulated as a Mixed-integer Nonlinear
Problem (MINLP) as follows:
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The objective function (1a) minimizes the compressor installation
and operation costs, and the supply/maintenance costs between com-
pressors and wells. Constraint set (1b) determines that a well must be
supplied by an installed compressor. Constraint set (1c) imposes that all
wells must be supplied, each one by a single compressor. Constraint set
(1d) imposes the upper limit of the gas rate qj

c. Note that if =x 1ij , just
the first term in the right-hand side of the inequality is activated, i.e. the
output gas rate qj

c must be less than or equal to qj
ic,max, . Otherwise, only

the second term of the right-hand side is activated, meaning that
compressor j must not exceed its maximum output gas rate qj

c,max.

Fig. 1. Illustration of a well operated by the continuous gas-lift technique.

Table 1
Notation used in the CSP formulations.

Symbol Definition

Sets
∈j N Set of compressors
∈i M Set of wells
∈j Ni Subset of compressors that can supply well i
∈i Mj Subset of wells that can be supplied by compressor j

Parameters
=n N| | Number of compressors
=m M| | Number of wells

cj Installation cost of compressor j
dj Per unity energy cost of compressor j

qj
c,min Minimum output gas rate of compressor j

qj
c,max Maximum output gas rate of compressor j

∈ …α l, {0, ,4}l j, Parameters of discharge pressure of compressor j

qi
w Gas rate demand of well i

pi
w Gas pressure demand of well i

eij Cost of supply/maintenance between compressor j and well i
lij Pressure loss in the pipeline between compressor j and well i

qj
ic,max, Maximum output gas rate qj

c of compressor j at which the

discharge pressure is sufficiently high to supply well i, i.e.

⩽ ⩽ + ⩾q q q q p q l pmax{ : , ( ) }j j j j j j ij i
c c,min c c,max c c w

Variables
∈y {0,1}j Indicates whether the compressor j is installed (1) or not (0)

∈x {0,1}ij Indicates whether the well i is supplied by compressor j (1) or not
(0)

�∈ +qj
c Gas rate output of compressor j

Functions
p q( )j j

c c Discharge pressure output of compressor
= + + + + +j p q α α q α q α q α q, ( ) ( ) ( ) ln(1 )j j j j j j j j j j j

c c
0, 1,

c
2,

c 2 3,
c 3 4,

c

h q( )j j
c c Operating cost function of compressor =j h q d q p q, ( ) · · ( )j j j j j j

c c c c c
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