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Abstract: This paper presents an automatic controller synthesis method for nonlinear systems
with reachability and safety specifications. The proposed method consists of genetic program-
ming in combination with an SMT solver, which are used to synthesize both a control Lyapunov
function and the modes of a switched state feedback controller. The resulting controller consists
of a set of analytic expressions and a switching law based on the control Lyapunov function,
which together guarantee the imposed specifications. The effectiveness of the proposed approach

is shown on a 2D pendulum.
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1. INTRODUCTION

Complex controller specifications of modern cyber-physical
systems can often be formulated as (linear) temporal prop-
erties, i.e. propositions that are qualified in terms of time.
In this paper we limit ourselves to a very specific temporal
property, i.e. the reach and stay while stay (RSWS) prop-
erty: all trajectories starting in an initial set I eventually
reach and stay within the goal set G, while always staying
in the safe set S. The aim of this paper is to automate
the synthesis of switched state feedback controllers for
nonlinear systems, such that the RSWS specification is
met.

Two popular correct-by-design controller synthesis ap-
proaches for nonlinear systems with temporal specifica-
tions are 1) abstraction and simulation, and 2) control
Lyapunov functions (CLFs) and control barrier functions
(CBFs). The first approach consists of finding a symbolic
abstraction of the system that (bi)simulates the original
system, for which it is easier to construct and verify a
controller to satisfy temporal logic specifications (Tabuada
(2009)). Tools implementing this methodology for nonlin-
ear systems are e.g. PESSOA (Mazo Jr et al. (2010)),
SCOTS (Rungger and Zamani (2016)), and CoSyMa
(Mouelhi et al. (2013)). Drawbacks of these methods are
that they require a discretization of the state space and the
controllers often take the form of enormous tables, hence
these methods suffer from the curse of dimensionality.

Control Lyapunov functions (CLF) (Artstein (1983)) and
control barrier functions (CBF) (Wieland and Allgéwer
(2007)) are design tools for stabilization and safety re-
spectively. The benefit of these methods is that there is
no need to compute the exact solution of the system.
Attempts to unify CLFs with CBF's can be found in e.g.
Romdlony and Jayawardhana (2016) and Xu et al. (2015).
A popular approach to automatic synthesis of (control)
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Lyapunov functions and (control) barrier functions is to
pose the problem as a sum of squares (SOS) problem,
which reduces it to a convex optimization problem, see
e.g. Papachristodoulou and Prajna (2002). This approach
is restricted to polynomial systems, although extensions
exist such that some non-polynomial functions can be used
by recasting them as polynomials, see e.g. Chesi (2009)
and Hancock and Papachristodoulou (2013). Nevertheless,
polynomial Lyapunov functions can be too restrictive. As
shown in Ahmadi et al. (2011), if a polynomial system
is globally asymptotically stable, there might exist no
polynomial Lyapunov function.

To overcome the limitations of the two discussed ap-
proaches, we propose to use genetic programming (GP).
GP is an evolutionary algorithm capable of evolving en-
coded representations of symbolic functions, until a satis-
factory solution is found (Koza (1992)). The evolution is
driven by a fitness function, which scores solutions on how
well they satisfy desired specifications. GP distinguishes
itself from other optimization methods in that it is able to
search over the function space, rather than over a param-
eter space. Due to this nature, genetic programming (and
variants) have been used to synthesize Lyapunov func-
tions, see e.g. Grosman and Lewin (2009), and controllers,
see e.g. Koza et al. (2003), Sekaj and Perkacz. (2007),
Diveev and Shmalko (2015), and Chen and Lu (2011). In
these works, fitness is based on specific samples and/or
simulations, hence no formal guarantee can be given on
the behavior of the system, other than for the specific test
cases. In this work we propose the combination of genetic
programming and a Satisfiability Modulo Theories (SMT)
solver (Barrett et al. (2009)), which uses a combination
of background theories to determine whether a first-order
logic formula can be satisfied or not. This solver is used to
provide formal guarantees on the behavior of the system.

In our approach, the used control strategy is a switching
law that switches between different controller modes based
on a CLF. Genetic programming is used to automatically
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generate both candidate CLFs and the controller modes.
Subsequently, the candidate solutions are verified using the
SMT solver. In this paper, the SMT solver dReal is used,
which is capable of providing formal guarantees on the
satisfiability of nonlinear inequalities over the real numbers
(Gao et al. (2013)). By using GP, we allow ourselves to
search for solutions that include non-polynomial functions.
Furthermore, as opposed to abstraction methods, the syn-
thesized controllers are expressed as analytic expressions,
that are in general more compact than a binary decision
diagram (BDD) or a lookup table. Finally, the proposed
method provides formal guarantees on stability and safety,
as opposed to previous attempts using GP.

A similar approach is found in Ravanbakhsh and Sankara-
narayanan (2015). Here, counter-example guided synthesis
is used to synthesize a CLF for a switched system with
a reach-while-stay specification. The verification is also
done using dReal. However, only the controller modes are
prefixed and only the CLF is synthesized.

To the best knowledge of the authors, this is the first work
combining genetic programming and formal verification
for controller synthesis. Furthermore, a special CLF is
designed for the RSWS specification and such that the
verification is decidable.

2. PROBLEM DEFINITION

Notation: Given a set A, let us denote the boundary
as 0A and the interior as int(A). The Euclidean norm
is denoted by || - || and the natural logarithm by In(-).
The temporal logic operators always and eventually are
denoted by O and ¢ respectively. The predicate defining
set A is denoted by ¢ 4. A system satisfies (¢ 4 if and only
if vt > 0,&(t) € A and a system satisfies 04 if and only
if 3 >0,&(t) e A

In this work we consider the class of nonlinear dynamical
systems described by

[§) = geww) )

where [ is a compact set and the variables £(¢) € R™ and
u(t) € R™ denote the state and input respectively.

The controller is designed such that the composition of
the system (1) and control input u(t) for ¢ > 0 results in
a system that satisfies

S1) Reach and stay while stay (RSWS): given a compact
safe set S, all trajectories starting from the compact
initial set I C int(S) eventually reach and stay in the
compact goal set G C int(S), while staying within
the safe set S. This corresponds to the temporal logic
formula Cgg A O0gg.

S2) There occurs no Zeno behavior.

We say a there occurs no Zeno behavior if there are no
infinitely many switches in a finite time interval.

This paper addresses the following problem:

Problem 1. Given the compact sets S, I, G and system
(1), synthesize a control law w(t) such that specifications
S1) and S2) are guaranteed.
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Fig. 1. Example of a RSWS CLF.
3. CONTROL STRATEGY

Consider the index set @ = {1,..., M}, controller mode
q € Q and vector fields H = {hy(£(t))|g € @} from R™ to
R™. In this work, we consider controllers of the form

u(t) = hq(&(1))- (2)
A switching law based on a CLF determines the next mode
q(&(tT)). The CLF is designed such that in combination
with the switching law the desired safety and reachability
specifications of S1) are enforced. This specific CLF is
referred to as the RSWS CLF.

8.1 RSWS control Lyapunov function

Classical (control) Lyapunov functions satisfy a “tight”
inequality, i.e. (Vz € D)V (z) > 0 and 3z € D such that
V(z) = 0, where {0} C D, see e.g. Khalil (2002). Similarly,
the first derivative also satisfies a tight inequality. As
stated in Gao et al. (2012), satisfiability of inequalities
over the reals for transcendental functions is not decidable,
hence they introduced the §-decision problem, which is
decidable. However, the d-decision problem can be prob-
lematic for tight inequalities, as will be shown in Section
5. To circumvent the occurrence of tight inequalities, we
introduce a perturbation variable § in our definition of the
RSWS CLF, yielding a more general CLF-like function,
coined the relaxed RSWS CLF. The term relaxed is used
to indicate that the bounds are picked to be more conser-
vative compared to the nominal RSWS CLF (i.e. § = 0).

Let us denote the Lie derivative of g(z) along the flow of

f(@,hg(@)) as Ly, = %52 f (2, hy())).

Definition 2. (Relaxed RSWS control Lyapunov function).
A function V € C%(S,R) is a relaxed RSWS control
Lyapunov function w.r.t. the compact sets (5,1, G) and
system (1), if there exists real numbers «, 3,v,¢,{ > 0,
and § > 0, such that

V(z) >k+¢ Vr e S\G
V(z) > -6 VeeG
Vi) >~ +k Va € 08
Vi) <y+k Vo el (3)
JgeQxt. Vy(r) < —aV(z)+ 0 Yz €S
Vy(z) <e Vq e Q,Vr e S
where V,(z) = Ly V, V,(z) = qu‘./:](x) and
0
k—B—Fa. (4)

Remark 3. Note that the relaxed control Lyapunov func-
tion is not a CLF in the strict sense if § > 0, as it and
its time derivative are not necessarily positive definite and
negative definite respectively.

To illustrate the first four conditions, an example RSWS
CLF is shown in Figure 1. For the sake of brevity, we use
CLF to refer to the relaxed RSWS CLF throughout this

paper.
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