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A B S T R A C T

Algorithms for constructing models of classification under streaming data scenarios are becoming increasingly
important. In order for such algorithms to be applicable under ‘real-world’ contexts we adopt the following
objectives: 1) operate under label budgets, 2) make label requests without recourse to true label information,
and 3) robustness to class imbalance. Specifically, we assume that model building is only performed using the
content of a Data Subset (as in active learning). Thus, the principle design decisions are with regard to the
definitions employed for sampling and archiving policies. Moreover, these policies should operate without prior
information regarding the distribution of classes, as this varies over the course of the stream. A team
formulation for genetic programming (GP) is assumed as the generic model for classification in order to support
incremental changes to classifier content. Benchmarking is conducted with thirteen real-world Botnet datasets
with label budgets of the order of 0.5–5% and significant amounts of class imbalance. Specific recommendations
are made for detecting the costly minor classes under these conditions. Comparison with current approaches to
streaming data under label budgets supports the significance of these findings.

1. Introduction

Streaming data applications represent an environment in which
data arrives on a continuous basis and exhibits non-stationary proper-
ties such as concept drift [1–4]. Thus, records (x→) appear sequentially
at discrete points in time, t, and are described by a joint probability
distribution p x d(→, )t , where in this work d represents the record's
unknown true label. If for two points in time, t and t + 1 there exists an
x→ such that p x d p x d(→, ) ≠ (→, )t t+1 , then concept drift has occurred. Such
drift might be slow or abrupt, subject to repetition and/or effect
different subsets of classes at different points in time.

The goal of a classification model operating on such streams is
therefore multifaceted. Not only is it necessary to suggest labels for
multiple classes of data in the stream on a real-time/anytime basis, but
it is also necessary for the model to identify what data to learn from.1

The process of identifying what to learn from constitutes a ‘label
request’ as a human expert is ultimately responsible for providing
ground truth labels. Moreover, it is only feasible for the model to
request labels for a small fraction of the data (the cost of acquiring
labels is high). Such constraints potentially appear in several applica-
tions, e.g. constructing trading agents for financial services or labelling
satellite data.

In this work we are motivated by the particular issue of identifying
Botnet behaviours in network traffic data. Botnets represent a net-
worked collection of devices whose security was at some point
compromised (the bots), so allowing a bot herder/master to remotely
control the bots. The owners of the compromised devices are unaware
of the ability of the bot master to control their devices. The bot master
is then free to use the bots to launch a wide range of malicious
behaviours while hiding their own identity. Detection of Botnets is non-
trivial because: 1) malicious behaviours are mixed in with legitimate
(normal) behaviours; 2) users have a wide range of ‘normal’ beha-
viours; 3) network load and application mix are time varying para-
meters; 4) many applications dynamically switch between different
modes of operation in unpredictable ways (e.g., services such as Skype
and Tor explicitly attempt to hide their communication protocols); 5)
new applications/updates to current applications (whether malicious
or not) coexist with both old versions of the same application resulting
in multiple simultaneous ‘fingerprints’ for the same application; and, 6)
the ratio of data pertaining to malicious versus non-malicious beha-
viour is very low.

The Botnet detection scenario is framed as follows. We cannot
predict a priori when Botnet behaviours will appear in the stream, as
network data represents a mixture of normal and malicious data.
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1 The non-stationary properties of the stream imply that training data has to be identified interactively during the course of deployment.
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Normal network data is also non-stationary, implying that it is also not
feasible to pre-train models off-line and then deploy (such models will
always ‘go stale’ as both normal and malicious data change at
unpredictable points in time). Human expert(s) are available for
providing true labels, d, for a small subset of the stream data (i.e.
label budget) on a continuous basis. This is necessary because attacks
against the machine learning algorithm itself lead to an attacker
‘reprogramming’ the classification of attack behaviours as normal by
manipulating stream data content [5,6]. In order to decouple human
experts from the raw throughput of the network data, only the GP
framework will identify data for labelling, not the human, i.e. this step
cannot assume access to the true labels. We assume that the human
experts are trustworthy (otherwise GP models could again be misled).
A champion GP individual must always be available for label predic-
tion, before any label querying can take place (real-time anytime
operation). The GP framework therefore operates interactively with
the stream providing predictions about the content (normal or Botnet)
and directs the human labelling of the stream under a finite label
budget.2 In framing the task this way, the proposed system has the
ability to operate under incoming and/or outgoing network traffic on a
wide range of network devices including servers and client devices.
Such a framework would be deployed to protect institutions/infra-
structure such as medical, financial or other institutions with human
security experts acting as the ultimate source of trusted label informa-
tion. Other scenarios might include IT security companies who provide
the anytime classifier to service subscribers and retain the other
components of the architecture.

In the following, we develop the topic by reviewing previous works
that address both the ability to operate under label budgets and address
the issue of class imbalance under streaming data (Section 2). The
framework we propose assumes a teaming formulation for genetic
programming (GP), where team GP formulations provide an evolu-
tionary approach for adapting an ‘ensemble’ of GP programs to data
content. Section 3 establishes how GP teams are evolved from a fixed
size Data Subset, as per active learning, thus the following two critical
decisions are addressed: 1) how to sample records from the stream to
appear within the Data Subsetwithout requiring label information; and
2) how to identify records for replacement from the Data Subset when
the subset is full. Section 4 develops the methodology adopted for
streaming classification algorithms operating under label budgets with
class imbalance, and introduces the real-world Botnet datasets em-
ployed for benchmarking.

The ensuing empirical study both quantifies the significance of the
GP teaming approach and compares to recent work capable of
operating under label budgets (Section 5). We make specific recom-
mendations regarding sampling versus replacement policies for GP and
quantify the impact of operating under low label budgets while
addressing class imbalance. Indeed, for streaming data applications
to be appropriate for real-world applications, it is necessary for them to
operate under both of these constraints simultaneously. Section 6
concludes the paper and suggests future research.

2. Related work

Several recent survey articles have appeared that provide overviews
of the scope of model building for streaming data classification under
non-stationary streams [2–4]. In the following we will concentrate on
highlighting issues specific to the problem setting of streaming
classification under label budgets: Section 2.1 reviews developments
regarding imbalanced data, change detection, and (online) active
learning from the perspective of non-evolutionary methods; and

Section 2.2 provides an equivalent survey from the perspective of
explicitly evolutionary methods.

2.1. Non-evolutionary methods

Change detection is a mechanism used to initiate retraining of a
model. Thus, only when sufficient change is detected, will a model be
updated. This potentially means that model building is decoupled from
the need to provide labels. For example, Lindstrom et al. describe a
process by which a reference distribution is constructed and used to
calibrate the model [7]. As the model passes over the stream a
divergence measure (expressing model confidence independent from
label information) is used to trigger model reconstruction. Any model
reconstruction is only performed from the most recent window content.
Such an approach only requests labels once a change is detected.
However, it also assumes that variation is solely captured by the
unconditional distribution of data p x(→). Any change to the posterior
distributions of data p y x( |→) remains undetected [8].

Active Learning implies that labels are explicitly sought for some
fraction of the data, and employ some form of change detection/
uncertainty threshold to initiate label requests. Several authors have
proposed bias/variance minimization schemes for this purpose
[9,10,1,11,12]. That said, empirical benchmarking has demonstrated
that just sampling with uniform probability (up to the label budget) is
sufficient to build surprisingly effective models, but only when class
instances are well mixed [9,8]. Z˘liobaitė et al. introduced an active
learning algorithm that balances both stochastic sampling with model
based uncertainty sampling in order to simultaneously address both
changes to p x(→) and p y x( |→); moreover, this is achieved within fixed
label budgets. Such an algorithm combines (model driven) uncertainty
sampling with random sampling. Additionally, the active learning
approach was sufficiently generic to be deployed with both the
streaming formulations for Naive Bayes and Hoeffding decision tree
models of classification.

Several recent works investigate the issue of class imbalance under
streaming data contexts. One approach is to adopt a formulation of
bagging with under or oversampling in order to construct a ‘Data
Subset’ from which model building is performed [13,14]. Specifically,
Ditzler et al. emphasizes operation under an incremental (i.e., batch)
updating while also supporting anytime labelling, whereas work by
Wang et al. emphasize operating under an online (i.e., record-wise)
updating constraint. Also of note is that even though Ditzler et al.
assumed the SMOTE algorithm developed for operating under sta-
tionary data with class imbalance [15], this was not the most effective
method investigated for operation under non-stationary data [13]. A
second general approach adopted for addressing class imbalance under
streaming data is the use of dynamically reweighing class costs [16,17],
where this has also been reported under an active learning context
[18]. Most recently, attention has been paid to scenarios in which
classes repeatedly drop in and out from the stream against a general
backdrop of classes that appear on a continuous basis [19], albeit with
true labels known for the entire stream content. In the application
context associated with this work, the generic number of classes is
known (e.g. attack or normal), but when they might appear is not.

Various semi-supervised frameworks have also been proposed for
operation under streaming data contexts, and provide a natural
framework for addressing labelled versus unlabeled data [20,21], i.e.
after an initial period of training from labelled data, the classifiers go
‘online’ using unsupervised learning alone. Specific points of interest
include operation under class imbalance and non-stationary data.
However, from the perspective of this work, operation online using
unsupervised learning would make such an approach particularly
susceptible to adversarial attackers [5,6].

2 Predictions from the anytime classifier might also be used to prioritize the records
identified for labelling, i.e. a record predicted as an attack class would be prioritized over
a record carrying a normal class prediction.
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