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a b s t r a c t 

Symbolic regression that aims to detect underlying data-driven models has become increasingly impor- 

tant for industrial data analysis. For most existing algorithms such as genetic programming (GP), the con- 

vergence speed might be too slow for large-scale problems with a large number of variables. This situa- 

tion may become even worse with increasing problem size. The aforementioned difficulty makes symbolic 

regression limited in practical applications. Fortunately, in many engineering problems, the independent 

variables in target models are separable or partially separable. This feature inspires us to develop a new 

approach, block building programming (BBP). BBP divides the original target function into several blocks, 

and further into factors. The factors are then modeled by an optimization engine (e.g. GP). Under such 

circumstances, BBP can make large reductions to the search space. The partition of separability is based 

on a special method, block and factor detection. Two different optimization engines are applied to test 

the performance of BBP on a set of symbolic regression problems. Numerical results show that BBP has a 

good capability of structure and coefficient optimization with high computational efficiency. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Data-driven modeling of complex systems has become increas- 

ingly important for industrial data analysis when the experimental 

model structure is unknown or wrong, or the concerned system 

has changed [1,2] . Symbolic regression aims to find a data-driven 

model that can describe a given system based on observed input- 

response data, and plays an important role in different areas of en- 

gineering such as signal processing [3] , system identification [4] , 

industrial data analysis [5] , and industrial design [6] . Unlike con- 

ventional regression methods that require a mathematical model 

of a given form, symbolic regression is a data-driven approach to 

extract an appropriate model from a space of all possible expres- 

sions S defined by a set of given binary operations (e.g. + , − , × , 

÷) and mathematical functions (e.g. sin , cos , exp , ln ), which can 

be described as follows: 

f ∗ = arg min 

f∈S 

∑ 

i 

∥∥ f (x 

(i ) ) − y i 
∥∥, (1) 

where x (i ) ∈ R 

d and y i ∈ R are sampling data. f is the target model 

and f ∗ is the data-driven model. Symbolic regression is a kind 

of non-deterministic polynomial (NP) problem, which simultane- 

ously optimizes the structure and coefficient of a target model. 
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How to use an appropriate method to solve a symbolic regres- 

sion problem is considered as a kaleidoscope in this research field 

[7–9] . 

Genetic programming (GP) [10] is a classical method for sym- 

bolic regression. The core idea of GP is to apply Darwin’s theory 

of natural evolution to the artificial world of computers and mod- 

eling. Theoretically, GP can obtain accurate results, provided that 

the computation time is long enough. However, describing a large- 

scale target model with a large number of variables is still a chal- 

lenging task. This situation may become even worse with increas- 

ing problem size (increasing number of independent variables and 

range of these variables). This is because the target model with 

a large number of variables may result in large search depth and 

high computational costs of GP. The convergence speed of GP may 

then be too slow. This makes GP very inconvenient in engineering 

applications. 

Apart from basic GP, two groups of methods for symbolic re- 

gression have been studied. The first group focused on evolution- 

ary strategy, such as grammatical evolution [11] and parse-matrix 

evolution [12] . These variants of GP can simplify the coding pro- 

cess. Gan et al. [13] introduced a clone selection programming 

method based on an artificial immune system. Karaboga et al. 

[14] proposed an artificial bee colony programming method based 

on the foraging behavior of honeybees. However, these methods 

are still based on the idea of biological simulation processes. This 

helps little to improve the convergence speed when solving large- 

scale problems. 
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The second branch exploited strategies to reduce the search 

space of the solution. McConaghy [15] presented the first non- 

evolutionary algorithm, fast function eXtraction (FFX), based on 

pathwise regularized learning, which confined its search space to 

generalized linear space. However, the computational efficiency is 

gained at the sacrifice of losing the generality of the solution. More 

recently, Worm [16] proposed a deterministic machine-learning al- 

gorithm, prioritized grammar enumeration (PGE). PGE merges iso- 

morphic chromosome presentations (equations) into a canonical 

form. The author argues that it could make a large reduction to 

the search space. However, debate still remains on how the sim- 

plification affects the solving process [17–19] . 

In many scientific or engineering problems, the target models 

are separable. Luo et al. [20] presented a divide-and-conquer (D&C) 

method for GP. The authors indicated that detecting the correla- 

tion between each variable and the target function could acceler- 

ate the solving process. D&C can decompose a concerned separable 

model into a number of sub-models, and then optimize them. The 

separability is probed by a special method, the bi-correlation test 

(BiCT). However, the D&C method can only be valid for an addi- 

tively/multiplicatively separable target model (see Definition 1 in 

Section 2 ). Many practical models are out of the scope of the sep- 

arable model ( Eqs. (6) and (7) ). This limits the D&C method for 

further applications. 

In this paper, a more general separable model that may involve 

mixed binary operators, namely plus ( + ), minus ( −), times ( ×), and 

division ( ÷), is introduced. In order to get the structure of the gen- 

eralized separable model, a new approach, block building program- 

ming (BBP), for symbolic regression is also proposed. BBP reveals 

the target separable model using a block and factor detection pro- 

cess, which divides the original model into a number of blocks, and 

further into factors. Meanwhile, binary operators could also be de- 

termined. The method can be considered as a bi-level D&C method. 

The separability is detected by a generalized BiCT method. Numer- 

ical results show that BBP can obtain the target functions more re- 

liably, and produce extremely large accelerations of the GP method 

for symbolic regression. 

The presentation of this paper is organized as follows. 

Section 2 is devoted to the more general separable model. The 

principle and procedure of the BPP approach are described in 

Section 3 . Section 4 presents numerical results, discussions, and ef- 

ficiency analysis for the proposed method. In the last section, con- 

clusions are drawn with future works. 

2. Definition of separability 

2.1. Examples 

As previously mentioned, in many applications, the target mod- 

els are separable. Below, two real-world problems are given to il- 

lustrate separability. 

Example 1. When developing a rocket engine, it is crucial to 

model the internal flow of a high-speed compressible gas through 

the nozzle. The closed-form expression for the mass flow through 

a choked nozzle [21] is 

˙ m = 

p 0 A 

∗√ 

T 0 

√ 

γ

R 

(
2 

γ + 1 

)( γ +1 ) / ( γ −1 ) 

, (2) 

where p 0 and T 0 represent the total pressure and total tempera- 

ture, respectively. A 

∗ is the sonic throat area. R is the specific gas 

constant, which is a different value for different gases. γ = c p / c v , 

where c v and c p are the specific heat at constant volume and con- 

stant pressure. The sub-functions of the five independent variables, 

p 0 , T 0 , A 

∗, R , and γ are all multiplicatively separable in Eq. (2) . That 

is, the target model can be re-expressed as follows 

˙ m = f ( p 0 , A 

∗, T 0 , R, γ ) 

= f 1 ( p 0 ) × f 2 ( A 

∗) × f 3 ( T 0 ) × f 4 ( R ) × f 5 ( γ ) . 
(3) 

The target function with five independent variables can be di- 

vided into five sub-functions that are multiplied together, and each 

with only one independent variable. Furthermore, the binary oper- 

ator between two sub-functions could be plus ( + ) or times ( ×). 

Example 2. In aircraft design, the lift coefficient of an entire air- 

plane [22] can be expressed as 

C L = C Lα( α − α0 ) + C L δe 
δe 

S HT 

S ref 

, (4) 

where C L α and C L δe 
are the lift slope of the body wings and tail 

wings. α, α0 , and δe are the angle of attack, zero-lift angle of at- 

tack, and deflection angle of the tail wing, respectively. S HT and S ref 

are the tail wing area and reference area, respectively. Note that 

the sub-functions of the variable C L α , C L δe 
, δe , S HT , and S ref are sep- 

arable, but not purely additively/multiplicatively separable. Vari- 

ables α and α0 are not separable, but their combination ( α, α0 ) 

can be considered separable. Hence, Eq. (4) can be re-expressed as 

C L = f 
(
C Lα, α, α0 , C L δe 

, δe , S HT , S ref 

)
= f 1 ( C Lα) × f 2 ( α, α0 ) + f 3 

(
C L δe 

)
× f 4 ( δe ) × f 5 ( S HT ) × f 6 ( S ref ) . 

(5) 

In this example, the target function is divided into six sub- 

functions. 

2.2. Additively/multiplicatively separable model 

The additively and multiplicatively separable models introduced 

in [20] are briefly reviewed below. 

Definition 1. A scalar function f ( x ) with n continuous variables x = 

[ x 1 , x 2 , . . . , x n ] 
� ( f : R 

n �→ R , x ∈ R 

n ) is additively separable if and 

only if it can be rewritten as 

f ( x ) = α0 + 

m ∑ 

i =1 

αi f i 
(
I ( i ) x 

)
, (6) 

and is multiplicatively separable if and only if it can be rewritten 

as 

f ( x ) = α0 ·
m ∏ 

i =1 

f i 
(
I ( i ) x 

)
. (7) 

In Eqs. (6) and (7) , I ( i ) ∈ R 

n i ×n is the partitioned matrix of 

the identity matrix I ∈ R 

n ×n , namely I = 

[
I ( 1 ) I ( 2 ) . . . I ( m ) 

]� 
, ∑ m 

i =1 n i = n . I ( i ) x is the variables set with n i elements. n i repre- 

sents the number of variables in sub-function f i . Sub-function f i is 

a scalar function such that f i : R 

n i �→ R . αi is a constant coefficient. 

2.3. Partially/completely separable model 

Based on the definition of additive/multiplicative separability, 

the new separable model with mixed binary operators, namely 

plus ( + ), minus ( −), times ( ×), and division ( ÷) are defined as fol- 

lows. 

Definition 2. A scalar function f ( x ) with n continuous variables 

x = [ x 1 , x 2 , . . . , x n ] 
� ( f : R 

n �→ R , x ∈ R 

n ) is partially separable if 

and only if it can be rewritten as 

f ( x ) = α0 �1 α1 f 1 
(
I ( 1 ) x 

)
�2 α2 f 2 

(
I ( 2 ) x 

)
�3 . . . �m 

αm 

f m 

(
I ( m ) x 

)
, (8) 
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